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Abstract

Malware code often resorts to various self-protection techniques to complicate analysis. One
such technique is applying Mixed-Boolean Arithmetic (MBA) expressions as a way to create
opaque predicates and diversify and obfuscate the data flow.

In this work we aim to provide tools for the simplification of nonlinear MBA expressions in
a very practical context to compete in the arms race between the generation of hard, diverse
MBAs and their analysis. The proposed algorithm GAMBA employs algebraic rewriting at its
core and extends SiMBA [19]. It achieves efficient deobfuscation of MBA expressions from the
most widely tested public datasets and simplifies expressions to their ground truths in most
cases, surpassing peer tools.

1 Introduction

Mixed Boolean-arithmetic (MBA) expressions, which have been introduced in the year 2006 by
Zhou et al. [27], are a commonly used technique in code obfuscation. Their use in malware samples
and various digital rights management (DRM) implementations is documented in the literature
[16,17,25]; see [12] for a detailed analysis of MBA usage in malware. They are believed to be one of
the strongest-known code obfuscation techniques [7]. In an effort to conceal secret information like
data and algorithms, basic expressions like constants are transformed into mixed Boolean-arithmetic
expressions that are semantically equivalent. This results in an artificial increase in code complexity
to obfuscate the code and make it less comprehensible. It is typically assumed that the resultant
complex expressions cannot be easily simplified back to their original form.

However, recent research [19] suggests that all linear MBAs can be solved in a straightforward
way. This work extends this finding and contributes a practical algorithm for the simplification of
nonlinear MBAs.

1.1 Prior work

Due to the fact that MBA expressions incorporate both logical and arithmetic operations that are
not well compatible [6], they cannot be genuinely resolved using SAT solvers or mathematical tools
that are intended to handle solely logical or arithmetic expressions, resp.

In recent years a significant number of tools specifically dedicated to their deobfuscation have
been published [7]. They use various techniques such as pattern matching (e.g., SSPAM [6]), neural
networks (e.g., NeuReduce [8]), bit-blasting (e.g., Arybo [10]), stochastic program synthesis (e.g.,
Stoke [22], Syntia [1] and Xyntia [15]), synthesis-based expression simplification (e.g., QSynth [4]
and msynth [2]), as well as a family of algebraic methods (e.g. MBA-Blast [12], MBA-Solver [26],
MBA-Flatten [13], SiMBA [19]).
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The first step in code analysis often is symbolic execution: locating and extracting code from a
malware sample and turning it into an abstract syntax tree (AST) [1,4,24]. In this work, we are not
concerned with the many complications involved in lifting binary code, identifying an expression,
etc. due to anti-debug/-trace techniques and program analysis limitations. We assume to have a
pair of expressions (e, e?), where e is the complicated MBA expression and e? the corresponding
simple, semantically equivalent ground truth. The aim is to simplify e in order to facilitate program
analysis – ideally back to e?. This setup is simpler compared to the scenario considered in program
synthesis [1, 2, 4], where obfuscated code (including control-flow problems) is taken as an input.

Zhou et al. [27] were also the first to describe how to generate random linear MBAs which
are equivalent to a – usually simple – target expression e? via a solution of a randomly generated
equation system based on the finding that a bitwise expression is fully determined by its values in
the set B = {0, 1} of zeros and ones. Another construction is an iterative application of rewriting
rules from a given codebook, mapping simple expressions to more complex ones, see, e.g., [23]. To
make MBAs more resistant to deobfuscation, additional encoding (e.g., using Tigress [3]), invertible
functions or point functions [23,27] can be applied. These methods may create significant challenges
for many simplification tools due to the potential introduction of large constants. Both generation
approaches can in general also be used for generating nonlinear MBAs. Obviously, a codebook
may also be used for the simplification of MBAs. While MBA expressions may not be immediately
present in the codebook, an SMT solver can be utilized to check for equivalency against the simpler
MBAs listed.

In 2021, Liu et al. [12,26] pointed out that Zhou et al.’s approach can be inverted too, pathing the
way for surprisingly simple algebraic simplification of linear MBAs. This finding, which is actually
already stated in Zhou et al.’s paper [27], but remained unnoticed due to a mistake, is leveraged by
the simplifiers MBA-Blast [12], MBA-Solver [26], MBA-Flatten [13] and SiMBA [19] operating on
linear MBAs. These tools outperform other existing tools significantly for this class of MBAs when
it comes to simplification success and runtime.

For the analysis of binary code, interactive disassemblers and decompilers are used. The SiMBA
algorithm has been integrated in Hex-Ray’s gooMBA plugin [9] for IDA Pro, to help turn complex
MBA expressions given as IR code into simple terms. In a practical setting, fast, correct, easy-to-use
and potent expression simplification is highly desirable. Early algorithms tend to be too slow (Arbyo,
SSPAM, Syntia), some require additional input (e.g., MBA-Solver requires subexpressions), depend
on training data or codebooks (NeuReduce, SSPAM ), are nondeterministic (due to sampling of input
data, e.g. QSynth, Syntia) or struggle with certain expressions (e.g., with nonlinear expressions or
expressions with more than 5 variables).

While linear MBAs have been shown to be easily solvable in general, it is still an open question
whether more generic MBAs can constitute a solid obfuscation technique. Although the papers
describing MBA-Solver [26] and MBA-Flatten [13] claim to be capable of simplifying polynomial
and even nonpolynomial MBAs, the published algorithms do not fully support this. They restrict
the representation of input MBAs1, and for a nonpolynomial input MBA it is required to provide a
subexpression whose replacement by a variable makes the MBA a polynomial one, which is clearly
impractical. Moreover, they do not output simplest solutions, but only ones using a set of bitwise
base expressions.

1.2 Contribution

In this paper, we turn our attention to the simplification of nonlinear MBAs, using SiMBA as
the core tool; we review preliminaries in Section 2. Although SiMBA is meant to operate on linear
MBAs, it can in fact correctly solve all MBAs which are reducible to linear ones (see Section 3).
We propose four improvements to SiMBA in Section 4 to make it more flexible. Then we describe
a more involved algorithm called GAMBA (for Generalized Advanced MBA simplifier) for nonlinear
MBAs (Section 5) based on an iterative application of SiMBA, in combination with additional tricks

1E.g., the user has to know whether an MBA is linear, polynomial or nonpolynomial; the number of variables is
limited to 4; variables have to use prescribed variable names; a polynomial input MBA is required to be a sum of
monomials; each term’s first factor has to be a constant.
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and, critically, a substitution of nonlinear subexpressions by variables. While we cannot claim to be
able to solve all MBAs with the current implementation, evaluation with publicly available datasets
shows very promising results (Section 6).

2 Preliminaries

2.1 Mixed Boolean-Arithmetic Expressions

Mixed Boolean-arithmetic expressions use logical (or bitwise, resp.) operators as well as arithmetic
ones. While logical operators basically operate on B = {0, 1}, i.e., single bits, bitwise operations are
equivalently applied to all bits of n-bit words in Bn for any fixed n ∈ N. This connection is of great
importance, as it builds the foundation for the generation as well as the algebraic simplification of
linear MBAs [27].

As in [19], we prefer the notion of bitwise expressions which fits better to our context. That
is, we use the operators & (bitwise conjunction), ∧ (bitwise exclusive disjunction), | (bitwise inclu-
sive disjunction) and ∼ (bitwise negation) rather than ∧ (logical conjunction), ⊕ (logical exclusive
disjunction), ∨ (logical inclusive disjunction) and ¬ (logical negation).

The most popular classes of MBAs are that of linear and polynomial ones, resp. We first reiterate
the definition of a polynomial MBA as in [19].

Definition 1 Let B = {0, 1} and n, t ∈ N. A polynomial mixed Boolean-arithmetic expression with
values in Bn and t variables is a function e : (Bn)

t → Bn of the form

e (x1, . . . , xt) =
∑
i∈I

ai
∏
j∈Ji

eij (x1, . . . , xt) ,

where I ⊂ N and Ji ⊂ N, for i ∈ I, are index sets, ai ∈ Bn are constants and eij are bitwise
expressions of variables x1, . . . , xt ∈ Bn for j ∈ Ji and i ∈ I.

As is easy to see and already noted in [19], a linear MBA is a special kind of a polynomial one:

Definition 2 Let B = {0, 1} and n, t ∈ N. A linear mixed Boolean-arithmetic expression with
values in Bn and t variables is a function e : (Bn)

t → Bn of the form

e (x1, . . . , xt) =
∑
i∈I

aiei (x1, . . . , xt) ,

where I ⊂ N is an index set, ai ∈ Bn are constants and ei are bitwise expressions of x1, . . . , xt for
i ∈ I.

For instance, the MBA x + (x&y)− 2(x|y) + 42 is linear, while the MBA y(x ∧ y)− (x&y)2 − 1
is polynomial, but not linear.

These notions were first introduced by Zhou et al. [27]. In this paper, we additionally use the
term general MBA for MBAs which are not necessarily polynomial. Here we restrict on those using
the bitwise operations &, |, ∧ and ∼ as well as additions, subtractions, multiplications and powers
(and implicitly left shifts, which can be written as multiplications of powers of 2).

There are two possible reasons why such an MBA is nonpolynomial:

1. It incorporates powers with nonconstant MBAs in their exponents, e.g., 3xy +x+17. It seems
obvious to us to call it an exponential MBA in this case.

2. It contains nontrivial constants or arithmetic operations in bitwise operations, e.g., 5+(x|3)−
(5&y). In this case we call it mixed.

See Figure 1 for a visualization. By “nontrivial” constants, we mean constants that are neither
0 nor −1 since those are the counterparts to the logical truth values.

In their paper [27], Zhou et al. describe a fundamental relation between Boolean and bitwise
expressions that paves the way for a surprisingly simple, but popular method for generating linear
MBAs:
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Figure 1: MBA types

Theorem 1 Let n, s, t ∈ N, xi variables over Bn for i = 1, . . . , t and ej : (Bn)
t → Bn bitwise

expressions on these variables for j = 1, . . . , s. Let

e (x1, . . . , xt) =

s∑
j=1

ajej (x1, . . . , xt)

be a linear combination of these bitwise expressions with coefficients aj ∈ Bn for j = 1, . . . , s and
hence a linear MBA. Furthermore let, again for j = 1, . . . , s, ej : Bt → B be the logical expression
corresponding to ej. Enumerate the possible combinations of zeros and ones for the variables by

Bt = {b1, . . . , b2t} arbitrarily, but fixed, and let A = (vij) ∈ B2t×s be the matrix of truth values of
the ej’s with vij = ej(bi).

Then e ≡ 0 if and only if the vector Y = Ya = (a1, . . . , as)
T is a solution of the linear equation

system AY = o over Bn, where o = (0, . . . , 0)T is the zero vector in B2t .

According to this theorem, a linear MBA e is equivalent to a bitwise expression ẽ on whole Bn,
for any n ∈ N, if and only if they are equivalent on B. As will be noted in Theorem 2, this also
holds if ẽ is a linear MBA itself.

This builds the foundation for our simplifier SiMBA for linear MBAs and may also do so for
generating general MBAs. To our knowledge, there is no obvious way how to define a similar
approach for generating nonlinear MBAs via just an evaluation on inputs in {0, 1}. An example
showing that these values are not unique for nonlinear MBAs in general is easy to find. E.g., the
polynomial MBA x2 is equivalent to the linear MBA x on {0, 1}.

2.2 Simplification of Linear Mixed Boolean-Arithmetic Expressions

Recent research has shown that linear MBAs are for sure those which are easiest to solve. This is why
most existing MBA simplifiers are especially successful with these MBAs or even only allow them
as inputs. From the mentioned algebraic tools, MBA-Blast, MBA-Solver and SiMBA are all based
– more or less directly – on Theorem 1 while MBA-Flatten uses a different approach to transform
an input expression into a linear combination of conjunctions.

One main difference between SiMBA on the one hand and MBA-Blast as well as MBA-Solver
on the other hand is that the latter use Theorem 1 directly to transform each bitwise expression
into a linear combination of bitwise expressions or a so-called signature vector and then combine the
results, SiMBA uses slightly more involved insights that allow to evaluate a linear MBA as a whole
on B = {0, 1} and directly derive a first solution. We restate the underlying theorem [19]:

Theorem 2 Let e and f be linear MBAs over words of the same length n and let t ∈ N be their
(maximum) number of variables. Then e ≡ f if and only if e(b) = f(b) for each possible combination
b of in total t zeros and ones.

What all these tools have in common is that they derive a linear combination of base bitwise
expressions as a candidate for a solution. One possible base is the set of all conjunctions, e.g.,
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{x, y, x&y,−1} for two variables, but there are multiple candidates and, e.g., MBA-Solver uses a
more complex basis. Therefore, the tools try to refine candidate solutions in order not to miss par-
ticularly simple solutions. While MBA-Blast and MBA-Solver check whether there is an equivalent
expression using only one term, SiMBA guarantees to find the simplest solution for all inputs using
two variables and for most inputs using three variables.

While the usage of MBA-Blast and MBA-Solver is restricted to MBAs with up to four variables
due to their usage of lookup tables, with a number of entries which grows hyperexponentially fol-
lowing the formula 22

t

for a number t of variables, this insufficiency is eliminated by MBA-Flatten,
paying with a higher runtime and the lack of the possibility to find simplest solutions. In contrast,
SiMBA is implemented fully generically and hence usable for an arbitrary number of variables, find-
ing simple solutions for all inputs which are reducible to MBAs with at most three variables. We
will explain in Section 4 how this can be made even more flexible.

3 Simplification of MBAs Reducible to Linear Ones Using
SiMBA

Although SiMBA is mainly targeting linear MBAs, its usage is not restricted to those. Since it
evaluates expressions directly on combinations of zeros and ones, its results are fully independent of
the input expressions’ representations. Unless SiMBA is instructed to neglect nonlinear inputs, it
provides a result for any input MBA.

On the one hand, it is obvious that not every MBA is reducible to a linear one. But on the other
hand, it is similarly easy to see that for each arbitrary MBA one can construct a linear one which
corresponds to it for values in {0, 1}. Consequently, and as already motivated in Subsection 2.1,
SiMBA’s results are incorrect if and only if the input MBA has no equivalent representation as a
linear MBA.

As a consequence, it is meaningful to run SiMBA on (not necessarily linear) MBAs whenever
it is known that they are reducible to linear ones, i.e., their ground truths are linear. Since it can
be assumed that a large portion of MBAs in practice are generated from linear ones, this extends
SiMBA’s field of application significantly.

Without any knowledge about the ground truth, one can still run the simplifier, but the result
has to be verified. This can be done, e.g., via an evaluation of both expressions or their difference
for values in Bn. However, this might take too long for larger n, and a check for just a subset of
possible argument combinations will not give 100% certainty.

Note that, e.g., a polynomial MBA with t variables is in general not a polynomial in these
variables. It is well a polynomial in bitwise expressions and can be transformed into a polynomial
in at most 2t base bitwise expressions, but when replacing the latter by variables, the information
about their interdependence is lost. Hence, it is not obvious how basic analytic techniques can be
leveraged to find roots of polynomial MBAs.

For example, consider the polynomial MBA

e1 = (−∼(x|y) + (x|∼y))(−(x ∧ y)−∼(x ∧ y))

+ (−2∼(y|x) +∼x +∼(y ∧ x))(−∼y − y)

and the exponential MBA

e2 = (−∼(x|y) + (x|∼y))−(x
∧y)−∼(x∧y)

+ (−2∼(y|x) +∼x +∼(y ∧ x))−∼y−y,

which can both be simplified to x + y.2 For another polynomial MBA

e3 = (x&y)(x|y) + (x&∼y)(∼x&y),

2The second factor of each term in e1 vanishes when writing negations ∼X as −X − 1, and equivalently for the
exponents in e2.
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SiMBA would output ẽ3 = x&y as a result. It is easy to verify that ẽ3 is equivalent to e3 on {0, 1},
but we have, e.g., that e3(1, 2) = 2, while ẽ3(1, 2) = 0. In fact, it is not possible to transform e3 into
a linear MBA.

4 Extending the Flexibilty of SiMBA

We want to use SiMBA as a utility for the simplification of general MBAs (Section 5). For this
purpose, we perform the following adaptations.

4.1 Complexity Metrics

SiMBA finds for most expressions with two or three variables a solution with a minimal number
of terms [19]. Obviously, such a solution is not necessarily the intuitively simplest solution. For
instance, the expressions e4 = 2((y&∼z)|(x&(y|∼z)))− (x∧ y ∧ z) and ẽ4 = x+ y− z are equivalent.
While the former has fewer terms, the latter is intuitively the one which would be expected as a
simplification result.

In general, the decision which solution is the “simplest” may depend on the type of application as
well as the user’s perspective. Hence, we extend SiMBA to choose a metric to guide decisions. Some
possible metrics are based on the representation of an expression as an AST, which we prefer over
a directed acyclic graph (DAG), in which equivalent nodes are merged. DAG nodes are impractical
to us since coincident copies of a subexpression might be simplified in different ways. We use the
following metrics:

1. MBA alternation: Proposed by Eyrolles [5] based on a DAG representation, it measures
how often an expression alternates between bitwise and arithmetic operations. Thus, a purely
bitwise or purely arithmetic expression has an MBA alternation of zero, independently of its
number of terms.

2. Number of nodes in the AST representation: Here we simply count the AST nodes,
similarly to the DAG nodes, as suggested by Eyrolles [5].

3. Number of terms: This is the metric which we have used so far and which is easiest to
compute and optimize for in our case.

4. String length: The string length is easy to compute too, but does not give much insights into
the structure of an MBA. Besides, it depends on the format of an MBA’s string representation.

If two considered MBAs have the same value for a metric, we apply a secondary metric to make
a decision. Given a vector of results of an MBA for all possible combinations of arguments in
{0, 1}, it is easiest for us to determine the minimal number of terms we can achieve, while the other
metrics’ optimizers are harder to find. This extension implies that we have to compute more possible
solutions and compare them.

In order to keep the number of inspected solutions small, we do not consider any solution with
an equal or higher number of terms compared to the linear combination of conjunctions, i.e., the
first candidate solution. We do not expect any such solution to minimize any of the metrics above,
as the bitwise expressions in this linear combination are very simple.

Returning to the example above, the number of terms is the only metric which would prioritize
e4 over ẽ4; no other possible solution is additionally investigated.

Digging a bit deeper, the candidate solution ẽ4 is the initially determined linear combination
of conjunctions, while e4 is found in an attempt to decompose the input MBA’s result vector
(0, 1, 1, 2,−1, 0, 0, 1)τ into a linear combination of truth value vectors of at most two bitwise ex-
pressions:

2 (0, 1, 1, 1, 0, 0, 0, 1)τ − (0, 1, 1, 0, 1, 0, 0, 1)τ .
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If we would consider all possible solutions consisting of three terms too, we would have to handle a
surprisingly high number of different solutions: Even when fixing the bitwise expressions’ coefficients
to 1, 1 and −1, we can derive 35 = 243 possible solutions, all using a different selection of three
terms. In fact, even the set of feasible coefficients is only bounded by the number of bits, since,
amongst other choices, 2, a and −a− 1 would yield a positive number of solutions for any a.

4.2 Additional Refinement Attempts

SiMBA, as presented in [19], performs up to 8 attempts to decompose a result vector in order to
find a simple solution. We already indicated in the preceding subsection that we now perform in
some occasions an exhaustive search for suitable bitwise expressions and coefficients that yield the
same number of terms.

However, the algorithm still would not find solutions such as x+∼y or ∼x+∼y. It is important
to find such simple solutions in order to have an optimal chance to simplify complex general MBAs
in the sequel. So we extend SiMBA by approaches to find linear combinations of a bitwise expression
and a negated one, as well as linear combinations of two negated bitwise expressions.

Let e be a linear MBA using t ≥ 2 variables and F = (e(b1), . . . , e(b2t))
τ its vector of results

when evaluated for all possible combinations bi of zeros and ones, where bi assigns the value 1 to
the variable xj if i’s remainder after a division by 2j is larger than 2j−1. We extend SiMBA with
the following two approaches to reduce the results’ complexity:

1. If F has three or four distinct values, its first entry a is nonzero and there are at most two
values that are neither a nor 2a, we can express e as a linear combination of an unnegated and
a negated bitwise expression in the following cases:

(a) If there is one such value b, we have two possible linear combinations with either coefficient
b − a or b − 2a for the unnegated bitwise expression and coefficient −a for the negated
one.

Example for t = 2: The vector (2, 2, 1, 4)τ can be decomposed into

(0, 0,−1, 0)τ − 2 (−1,−1,−1,−2)τ ,

yielding the solution −(∼x&y)− 2 · ∼(x&y), or

(0, 0,−3, 0)τ − 2 (−1,−1,−2,−2)τ ,

yielding the solution −3(∼x&y)− 2 · ∼y.

(b) If there are two such values b, c and, w.l.o.g., c−b = a, we have a linear combination with
coefficient b − a for the unnegated bitwise expression and coefficient −a for the negated
one.

Note that in this case we might have multiple possible decompositions if b = 0, since we
can express F ’s entries equal to −a alternatively as b− a.

Example for t = 2: The vector (−1, 0, 1, 0)τ can be decomposed into

2 (0, 1, 1, 1)τ + (−1,−2,−1,−2)τ ,

yielding the solution 2 (x|y) +∼x.

2. If F has three or four distinct values, its first entry a is nonzero, there are exactly two values
b, c that are neither a nor 2a and these sum up to 3a, we can express e as a linear combination
of negated bitwise expressions with coefficients a− b and a− c.

The corresponding negated bitwise expressions’ result vectors have value −1 where F has either
value a or c (or b, resp.) and value −2 where F has either value 2a or b (or c, resp.). The
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truth values of the bitwise expressions to be negated can then be derived by replacing −1 by
0 and −2 by 1.

Example for t = 2: The vector (4, 9, 9, 3)τ can be decomposed into

(−1,−1,−1,−2)τ − 5 (−1,−2,−2,−1)τ ,

yielding the solution ∼(x&y)− 5 · ∼(x ∧ y).

The attentive reader might have noticed that by ignoring values equal to 2a we have neglected
cases in which we can find solutions with just one term, as these are already found in a previous
step of the algorithm – see Subsection 3.2.4 of [19].

4.3 Try to Split Expressions with More Variables

If the initially determined linear combination of conjunctions uses more than three variables, this
indicates that the input expression cannot be expressed using a fewer number of variables, and
we thereby cannot use a lookup table for finding a simpler solution. Note that a lookup table
for four variables would have 22

4

= 65 536 entries, and one for five variables would already have
22

5

= 4 294 967 296 entries.
In the next subsection we provide one possible workaround, but this increases the runtime for a

higher number of variables. Yet we can avoid it in special cases: If we can nontrivially partition the
initial solution’s terms with respect to the occurring variables, i.e., such that the parts use disjunct
sets of variables, we can handle these parts separately and combine the results. An optional constant
may fit to either part, so we may have multiple possible solutions.

Consequently, for parts using at most three variables, we have the chance to run the usual
procedure. For others we can apply the method described in the next subsection. As an example,
consider the input expression

(a&∼b) + b− 3((x&∼y) ∧ z) + 3(∼y|z)

− ((x&∼y) ∧ ∼z) + 4(∼x|y)− 4(∼x ∧ (y&z))

+ (x ∧ (y&∼z))− x− 2(∼x&(y|∼z))

− 2((x&y) ∧ z),

which can be transformed into the initial solution

a + b− (a&b)− 2y − 2z + 2(x&y) + 2(x&z)

+ 4(y&z)− 4(x&y&z).

This can be partitioned into three terms using the variables a and b and six terms using the variables
x, y and z. While the former can be simplified to a|b, the latter reduces to −2(∼x&(y ∧ z)). Hence,
the result would be

(a|b)− 2(∼x&(y ∧ z)).

If a constant term exists in the initially determined linear combination, it fits to any partition.
However, it is reasonable to choose the option which minimizes the used complexity metric.

4.4 Creation of Base Bitwise Expressions

As mentioned, lookup tables of bitwise expressions grow fast with an increasing number of variables,
hence we only use them for up to three variables. The peer tools MBA-Blast and MBA-Solver do
so also for four variables, but as noted in [19], it slows the algorithms down drastically.

Fortunately, we can instantly create sufficiently simple bitwise expressions for any given vector of
truth values using the Quine–McCluskey algorithm [14,18] to find a minimal disjunctive normal form,
i.e., a disjunction of conjunctions of (possibly negated) variables that cannot be further reduced.
Note that unfortunately its exponential runtime limits its usage too.
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As an example, consider the truth value vector (0, 1, 1, 0, 0, 1, 1, 0)τ for four variables. The Quine-
McCluskey algorithm would first create conjunctions for each 1 in this vector, namely x&∼y&∼z,
x&∼y&z, ∼x&y&∼z and ∼x&y&z, and then merge the former two as well as the latter two to
finally get the disjunction (x&∼y)|(∼x&y). Actually this can be further simplified to x ∧ y.

In order to identify chances to find simpler bitwise expressions as above, we perform refinements
iteratively until nothing changes any more:

1. Try to insert exclusive disjunctions: For any bitwise subexpressions X and Y , we can use the
following patterns for a transformation into an exclusive disjunction X ∧ Y :

(X&∼Y )|(∼X&Y ) ≡ X ∧ Y,

(X|Y )&(∼X|∼Y ) ≡ X ∧ Y.

2. Potentially flip negations: If a subexpression becomes simpler via flipping all its operands’
negations, apply De Morgan’s law. Additionally, ∼X ∧ ∼Y ≡ X ∧ Y.

3. Try to factor out common subexpressions: If a certain subexpression occurs in all operands of
another subexpression, we apply the distributive law. This includes the following well-known
patterns:

(X&Y )|(X&Z) ≡ X&(Y |Z),

(X|Y )&(X|Z) ≡ X|(Y &Z).

This list is not exhaustive and may be extended as desired. Note that other common rules such
as the absorption laws or the idempotence laws have already implicitly been applied during the
Quine-McCluskey algorithm.

Algorithm 1 Simplification of an MBA e reducible to a linear one (extended SiMBA)

1. Determine linear combination ẽ ≡ e of conjunctions

2. Identify the number t of variables in ẽ

3. If t ≤ 3:

(a) Try to find a simpler solution using table

4. Else:

(a) Determine partition P of ẽ w.r.t. variables

(b) For all parts p ∈ P with at most 3 variables:

i. Try to find a simpler solution using table

(c) For all parts p ∈ P with more than 3 variables:

i. Try to find a simpler solution using bitwise creation as described in Subsection 4.4

(d) Compose the results

Algorithm 1 summarizes SiMBA’s steps for simplifying MBAs that are reducible to linear ones.
Here the whole branch 4 is newly introduced, while step 3a has been extended.

5 Simplification of General MBAs

In this section, we describe how we can use SiMBA in combination with additional steps to simplify
MBAs that are not necessarily linear and not necessarily reducible to linear MBAs. As SiMBA,
GAMBA is written in Python without usage of packages such as NumPy or SymPy for nontrivial
computations or simplification.
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5.1 Outline

It is meaningful to operate on abstract syntax trees (ASTs) rather than on strings. This helps
identify variables, classify nodes as bitwise, linear or nonlinear subexpressions, compare expressions
with more flexibility (e.g., not necessarily requiring a coincident order of operands), as well as extract,
modify and reintegrate subexpressions.

Each node of an AST is either a variable, a constant or an operator with a certain number of
operands. That is, each leaf node is a variable or a constant. The following operators, ordered
by precedence, suffice for our purposes: power, bitwise negation (∼), multiplication (·), sum (+),
conjunction (&), exclusive disjunction (∧) and inclusive disjunction (|).

The strategy of GAMBA is sketched in Algorithm 2 which iteratively identifies linear subexpres-
sions and simplifies them using SiMBA. In order to increase the chance of doing so, between these
simplification runs, operations that support simplification as well as normalization are performed.

Algorithm 2 Simplification of a general MBA e (GAMBA)

1. Parse e into an AST t

2. Repeat until convergence:

(a) Refine t as described in Subsection 5.2

(b) Identify linear subtrees of t as described in Subsection 5.3

(c) Try to factorize nonlinear sums as described in Subsection 5.4

(d) Apply SiMBA to linear subexpressions as sketched in Algorithm 1

(e) Collect nodes for substitution

(f) For all combinations of those nodes:

i. Substitute these nodes by variables

ii. Apply steps 2a to 2d

iii. Back-replace these variables

iv. Refine t

3. Polish t for optimal representation

4. Return a string representation of t

In some cases it is nontrivial to retrieve linear parts of a nonlinear MBA if, e.g., products of linear
subexpressions are expanded. To resolve that, GAMBA incorporates a factorization procedure which
tries to decompose sums of higher-order terms into factors.

Another main challenge for the simplification of MBAs that contain constants or arithmetic
expressions within bitwise operations is to get rid of the latter or any other nonlinear subexpressions,
if possible. This is done via a substitution logic, making subexpressions linear by substitution of
nonlinear parts with temporary variables, simplifying and reinserting the substituted parts.

The aim of step 3 is to apply some standardization, including a deterministic order of operands
in any kind of operation. This facilitates comparisons between simplified expressions.

This algorithm is a proof-of-concept and may have to be further adapted in order to be powerful
enough to simplify (nearly) arbitrarily complex expressions.

5.2 Node Operations for Refinement

A refinement procedure is very crucial in order to establish invariants as well as to make sure that
we can leverage a successful simplification of a subexpression. Imagine, e.g., that some expression
cannot be further simplified because it has a subexpression like (x|3)&∼(x|3), which is equivalent
to 0 and hence purely bitwise.
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For normalization, we establish some trivial invariants such that all constant operands of a node
are merged into one. Additionally we perform, amongst others, the following inspections in order to
prepare the expression for simplification:

Applying logical rules in bitwise operations: In conjunctions and exclusive as well as inclusive disjunc-
tions, we get rid of all constants that are 0 or −1, and resolve duplicate operands as well as operands
that are inverse to each other. Furthermore De Morgan’s law may be applied to conjunctions or
inclusive disjunctions.

Rearrangement of sums: In sums, we collect terms that differ at most in constant factors and factor
out common factors if possible.

Merging of powers: In multiplications, powers are merged if they have the same base. This helps
identify linear MBAs in exponents.3

Eliminating or rewriting bitwise negations: Nested negations are resolved, respecting the possibility
that ∼X is written as −1−X or −1(1 +X) for any subexpression X. Furthermore, for any bitwise
negation, either written explicitly using the negation operator or implicitly in arithmetic form, it is
decided upon its context which representation increases the chance of simplification.

Flattening bitwise operations: In some occasions a bitwise operation’s complexity can be reduced
via splitting it in terms, which is mainly meaningful in sums. This is, e.g., possible if an inclusive
disjunction’s operands are (or can be made) disjunct, including patterns such as (X&Y )|(X ∧ Y ) ≡
(X&Y ) + (X ∧ Y ) or even X|(X ∧ Y ) ≡ (X&Y ) + (X ∧ Y ), which is equivalent to the former.4

Factoring out from bitwise operations: Powers of 2 can be factored out from conjunctions, inclusive
and exclusive disjunctions if they appear in all their operands. This can help get rid of constants in
bitwise operations and hence make subexpressions linear. This corresponds to the pattern 2X&2Y ≡
2 (X&Y ), and equivalent for the other operations. In fact we can even factor out a power of 2 in
cases where not all operands are divisible by that. Depending on the type of operation, we may have
to compensate this by adding a remainder. Consider the following examples for subexpressions X
and Y and a constant a and remember that ∼X ≡ −X − 1:

∼(2X)&2Y ≡ 2 (∼X&Y ),

∼(2X)|2Y ≡ 2 (∼X|Y ) + 1,

(2a + 1) ∧ 2X ≡ 2 (a ∧ X) + 1.

Merging bitwise operations involving constants: In sums, we may get rid of constants via merging
bitwise operations with constants and, apart from that, coincident operators. This is particularly
useful if the arising constants are 0 or −1. The following rules hold for constants a, b that have no
1s in common in their binary representations:

(a&X) + (b&X) ≡ (a + b)&X,

(a|X) + (b|X) ≡ ((a + b)|X) + X,

(a ∧ X) + (b ∧ X) ≡ 2 (∼(a + b)&X) + a + b,

(a|X)− (b&X) ≡ (∼(a + b)&X) + a,

(a ∧ X)− 2 (b&X) ≡ 2 (∼(a + b)&X)−X + a,

(a ∧ X) + 2 (b|X) ≡ 2 (∼(a + b)&X) + X + a + 2 b.

Merging bitwise operations involving inverse elements: Similarly as explained above, terms of sums
may be merged if the disjunct constants are replaced by inverse elements which are disjunct too.

3As an exponential MBA can be generated from a polynomial one by adding linear MBAs that are equivalent to
1 as exponents and optionally splitting the arising powers, we try to restore such exponents.

4Since a bit of X ∧ Y is 1 if the corresponding bits in X and Y are different, it suffices to assume that they coincide
in the inclusive disjunction’s other operand, implying we can add a conjunction with Y .
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Some of the resulting patterns are well known:

(X&Y ) + (∼X&Y ) ≡ Y,

(X|Y ) + (∼X|Y ) ≡ −1 + Y,

(X ∧ Y ) + (∼X ∧ Y ) ≡ −1,

(X|Y )− (∼X&Y ) ≡ X,

(X ∧ Y )− 2 (∼X&Y ) ≡ X − Y,

(X ∧ Y ) + 2 (∼X|Y ) ≡ ∼X + Y − 1.

Note that we do not have to consider any optimization of linear expressions since SiMBA already
outputs simplest expressions for them. However, the shown patterns also hold for non-bitwise
subexpressions X and Y .

5.3 Identification of Linear Subexpressions

Before SiMBA can be applied to linear subexpressions, it is necessary to identify them. Additionally,
purely bitwise expressions are identified as well. This is done in a straightforward way by induction:

– A variable is a bitwise expression.

– A constant node is considered bitwise if it is 0 or −1 (corresponding to the logical constants),
and linear otherwise.

– A subexpression corresponding to a bitwise operator (negation, conjunction, exclusive or in-
clusive disjunction) node is bitwise if all its operands are bitwise expressions, and nonlinear
otherwise.

– A sum is nonlinear if it has a nonlinear term, and linear otherwise. In the former case, we can
collect its linear terms which consequently form a linear subexpression.

– Being able to assume that at most one operand is constant, a product is nonlinear if it has
more than two operands, at least one nonlinear operand or two operands and none of them is
constant. Otherwise it is linear.

– Being able to assume that a power is never trivial, i.e., does not have the constant 1 as
exponent, it cannot be linear.

5.4 Factorization

The factorization of nonlinear sums is a crucial step for simplifying nonlinear MBAs whose linear
parts are well-hidden by an expansion of their products. In such cases we cannot identify linear
subexpressions easily, and the basic node operations as described in Subsection 5.2 do not provide
a solution. As an example, consider the MBA

−x · ∼(x|z)− y · ∼(x|z)− x (x&∼z)

− y (x&∼z)− xz − yz,

which is in fact the product of the linear MBAs x + y and

−(∼(x|z))− (x&∼z)− z,

whereas the latter is equivalent to a constant 1.5 That is, in order to simplify the MBA to x + y,
we have to identify these factors. GAMBA iteratively finds simple factors which appear in a large

5This becomes evident after applying De Morgan’s law to ∼(x|z) to obtain ∼x&∼z, realizing that (∼x&∼z) +
(x&∼z) is equivalent to ∼z and writing the latter as −z − 1.
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number of terms of a sum, factors them out of them and splits the sum accordingly. In the sequel,
these new terms can be collected if they only differ in the components that have been factored out.

In the previous example, x and y both appear in three terms. Hence, they would be factored out
to obtain

x (−(∼(x|z))− (x&∼z)− z)

+ y (−(∼(x|z))− (x&∼z)− z),

these terms can be combined to

(x + y) (−(∼(x|z))− (x&∼z)− z),

and the latter factor vanishes by simplifying using SiMBA.
Before factorization, it may be necessary to expand products and powers and collect terms there-

after. Note that an MBA generator may, after generating linear MBAs for subexpressions, obscure
those via expanding products and factorizing expressions into factors that cannot be simplified easily.

5.5 Substitution of Subexpressions

The techniques presented so far are usually not sufficient to simplify nonlinear MBAs, especially
mixed ones, i.e., those containing constants or arithmetic operations within bitwise operations. In
order to get rid of those, we apply some substitution logic. Our hope is to transform nonlinear
subexpressions into linear ones via substitution of parts by variables, and that they get simpler
via simplification using SiMBA and subsequent reinsertion of the substituted parts. As a simple
example, consider the MBA

((−x) ∧ y)− 2 ((∼− x)&y)

which has no nontrivial linear subexpressions, but is in fact easily solvable by SiMBA after substi-
tuting −x by a temporary variable, say, X. Then the expression

(X ∧ y)− 2((∼X)&y)

would resolve to X − y,6 and after resubstitution to −x− y.
In some cases it might not be sufficient to only replace one subexpression because, e.g., subex-

pressions might remain nonlinear, but substituting a second subexpression might help. For instance,
this is the case for the MBA

∼x +∼(y − 1) + 2

+ ((−∼x + 1− 1)|(−(∼(y − 1))− 1)),

which can only be simplified after a simultaneous substitution of −(∼x + 1) − 1 by, say, X, and
−∼(y − 1)− 1 by, say, Y .

In general, it is hard to decide on the right strategy since a simultaneous substitution may in
some occasions hide too much of the interdependence between variables and subexpressions, so we
collect all nodes which are meant to be substituted and run the substitution procedure on all possible
subsets of this set.

In fact, the example above shows that we have to identify subexpressions to be substituted even
if they are not fully present: We actually substitute ∼x + 1 by −X − 1 and ∼(y − 1) by −Y − 1.
This simplifies to ∼(X&Y ) and to −x| − y after back-substitution and refinement.

After substitution it might be necessary to do additional work regarding linear subexpressions
which is usually done by SiMBA, but not in this case, when the interdependence between subex-
pressions is hidden by the substitution. In this course, e.g., we check whether terms of sums cancel
out due to basic laws of logic.

6This can be seen after transforming X ∧ y into ∼((∼X) ∧ y) and consequently into −((∼X) ∧ y)− 1, expanding
(∼X) ∧ y to ((∼X)|y)− ((∼X)&y), replacing (∼X|y) + ((∼X)&y) by ∼X + y and finally writing ∼X as −X − 1.
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5.6 Remarks and Outlook

We have described and implemented various techniques that support the simplification of MBAs
of any kind, and the experiments below will suggest that this is a sophisticated starting point on
the way to a powerful MBA simplifier. However, simplifying nonlinear MBAs is far from being
straightforward and hence we can neither guarantee nor hope that this algorithm will be able to
simplify all possible inputs. We consider it work in progress which can be improved with every input
it fails to simplify. There will be further techniques to apply or transformation rules that can be
implemented.

Apart from that, the current state of GAMBA is not optimized regarding runtime. It may in
some occasions consider subexpressions which are actually already optimally simplified. Moreover,
we are aware of corner cases in which a tradeoff between performance and success probability has
to be met, e.g., when a high number of possible solutions exist (see Subsection 4.1) or the number
of variables is large (see Subsection 4.3).

Besides, a high number of different nonlinear subexpressions, including constants, within larger
subexpressions is challenging if they cannot be resolved applying transformation rules. In our sub-
stitution logic we have to substitute them by different variables, which increases the runtime. Our
main goal is to show that it is well possible to simplify MBAs of any kind, and suggest one possible
way how to achieve that.

6 Experimental Results

All experiments are run on a Linux Mint 21 virtual machine on a single core of an Intel Core i7-
12700K CPU at 3.6 GHz. The runtime was measured using Python 3.11 with the time package.
Furthermore, we use n = 64 bits in all experiments unless otherwise noted.

We use six publicly available datasets. Table 1 shows their numbers of expressions, expression
types (linear, polynomial, nonpolynomial), numbers of variables (Vars), the average numbers of MBA
alternations (Alt ∅), and the AST node count averages (Node ∅). All occurring nonpolynomial
expressions are mixed, i.e., have constants or arithmetic operations within bitwise operations.

Table 1: Public MBA datasets

Dataset Expr. Type Vars Alt ∅ Node ∅

NeuReduce [8] 10 000 linear 2 to 5 7.9 53.6

MBA-Obf. [11] 1 000 linear 2 to 3 30.6 267.7
linear

MBA-Obf. [11] 500 poly 2 18.7 94.8
nonlinear 500 nonpoly 2 26.1 110.3

Syntia [13]
182 linear 1 to 2 1.6 9.4
51 poly 1 to 3 3.6 17.0

267 nonpoly 1 to 3 6.9 27.6

MBA-Solver [26]

1 000 linear 1 to 4 9.1 71.6
1 000 poly 1 to 3 9.5 58.7
1 000 nonpoly 1 to 3 57.4 306.1

QSynth EA [4] 500 nonpoly 1 to 3 77.6 281.7

Per dataset, we compute how many expressions can be simplified with SiMBA and GAMBA,
and compare with peer tools. Timeout is 60 min unless noted otherwise and taken from references.
Results reported are taken from the respective publications unless the tool name is written in italic
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letters. Then they are self-generated. We do so for MBA-Flatten since it is the closest and most
recent related tool.

When presenting simplification results, ≡ denotes that a complex MBA expression e has been
reduced to the corresponding ground truth e?. Moreover, ≈ indicates that the resulting expression
is semantically equivalent to e? (e.g. by simplifying their difference or proving equivalence using a
SMT solver such as Z3 [21]). We use × when the result could not be proven to be correct, no result
was given, or an error occurred. The column % indicates the percentage of successful experiments
(≡,≈) over the dataset. Bold letters mark the best results per dataset.

Denote the simplification function by S. Given (e,e?) in the benchmarking scenario, a simplified
expression S(e) can be verified in several ways:

i. It is identical to the ground truth, i.e., S(e) ≡ e?.

ii. It is identical to the simplified ground truth, i.e., S(e) ≡ S(e?).

iii. Their simplified difference S(S(e)− S(e?)) is zero, hence the result is semantically equivalent.

iv. It can be proven semantically equivalent using an SMT solver. For runtime performance
reasons, the last check is often only computed for words Bn with a limited number of bits,
e.g., n = 4 or n = 8, allowing some incorrect results go undetected.

We put the focus on simplification success rather than runtimes. While we mention SiMBA’s
and GAMBA’s runtimes in order to be able to understand the complexity of, e.g., the additional
refinement logic as well as iterative calls to SiMBA, we refer to [12] and [19] for runtime comparisons
among nonalgebraic and algebraic tools, resp.

6.1 NeuReduce

The test dataset of NeuReduce [8] consists of 10 000 linear expressions with 2 to 5 variables. We
observe that SiMBA and GAMBA can simplify all expressions, even to the ground truth in all cases,
see Table 2. Note that MBA-Flatten fails to handle expressions with 5 variables.

Table 2: NeuReduce dataset results [8], timeout 40 min

Tool ≡ ≈ × Timeout %

Arybo 862 0 0 9 138 8.6
SSPAM 1 420 0 0 8 580 14.2
Syntia 842 734 8 424 0 15.8

NeuReduce 7 796 28 2176 0 78.2
MBA-Flatten 8 560 0 1 440 0 85.6

SiMBA 10 000 0 0 0 100.0
GAMBA 10 000 0 0 0 100.0

The expressions of this dataset are simplified by SiMBA in 0.77 ms (median: 0.74 ms) and by
GAMBA in 8.30 ms (median: 9.27 ms) on the average.

6.2 MBA-Obfuscator

The dataset consists of 1 500 linear, 1 500 polynomial and 1 500 nonpolynomial MBA expressions
with 2 to 4 variables, but results are reported in [11] only for the first 1 000 linear, and 1 000 nonlinear
expressions (combining the first 500 polynomial and nonpolynomial expressions).

MBA-Obfuscator [11] was the first proposal to generate diversified nonlinear MBA expressions.
Due to the construction procedure, the nonlinear expressions share the same linear ground truth
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Table 3: MBA-Obfuscator linear dataset results [11]

Tool ≡ ≈ × Timeout %

Arybo N/A 569 0 431 56.9
SSPAM N/A 386 356 258 38.6
Syntia N/A 97 903 0 9.7

NeuReduce N/A 756 244 0 75.6
MBA-Blast N/A 1 000 0 0 100.0

MBA-Flatten 1 000 0 0 0 100.0
SiMBA 1 000 0 0 0 100.0

GAMBA 1 000 0 0 0 100.0

with the linear expressions. The linear expressions in the dataset are quite large: They comprise
267.7 AST nodes on average, with a mean MBA alternation count of 30.6 on average.

The linear subset does not pose any problem to MBA-Blast, MBA-Flatten, SiMBA or GAMBA,
see Table 3. The nonlinear subset is much harder: NeuReduce can provide only one solution to an
expression which is in fact still linear. MBA-Flatten fails on several nonpolynomial MBAs in the
dataset. Surprisingly, SiMBA succeeds in simplifying all expressions thanks to their linear ground
truth, as explained in Section 3. GAMBA in one case returns a slightly more complicated expression,
but can still verify the result using verification strategy iii.

SiMBA runs 2.47 ms (median: 0.72 ms) on the linear and 0.60 ms (median: 0.62 ms) on the
nonlinear dataset on the average, while GAMBA takes 18.41 ms (median: 10.14 ms) on the linear
and 26.50 ms (median: 15.12 ms) on the nonlinear dataset on the average.

Table 4: MBA-Obfuscator nonlinear dataset results [11]

Tool ≡ ≈ × Timeout %

Arybo N/A 84 0 916 8.4
SSPAM N/A 103 192 705 10.3
Syntia N/A 98 902 0 9.8

Neureduce N/A 1 999 0 0.1
MBA-Blast N/A 147 853 0 14.7

MBA-Flatten 953 0 47 0 95.3
SiMBA 1 000 0 0 0 100.0

GAMBA 999 1 0 0 100.0

6.3 Syntia

This dataset contains 500 expressions with up to 3 variables and was generated using the Tigress
obfuscator [3]. Although several expressions are duplicates (only differ by variable name, 438 ex-
pressions are unique), the dataset is used as a point of reference by many publications, e.g. [4], [13].

More than half of the expressions are nonpolynomial and 183 of them are not reducible to a
linear MBA. Consequently SiMBA cannot simplify the latter, see Table 5. While QSynth, MBA-
Flatten and GAMBA can simplify the entire dataset, only GAMBA’s results are always identical
to the ground truth. Note that for solving the Syntia dataset, MBA-Flatten uses a non-generic,
customized implementation based on knowledge about these MBAs’ structure.

SiMBA’s average runtime for this dataset is 0.18 ms (median: 0.10 ms) and that of GAMBA is
8.89 ms (median: 7.67 ms).
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Table 5: Syntia dataset results [13]

Tool ≡ ≈ × Timeout %

SSPAM N/A 332 168 0 66.4
Syntia N/A 369 131 0 73.8
QSynth N/A 500 0 0 100.0

MBA-Blast N/A 416 0 84 83.2
MBA-Solver N/A 454 0 46 90.8
MBA-Flatten 302 198 0 0 100.0

SiMBA 317 0 183 0 63.4
GAMBA 500 0 0 0 100.0

6.4 MBA-Solver

The dataset contains 1 000 linear, 1 000 polynomial and 1 000 nonpolynomial MBA expressions with
up to 4 variables. The nonpolynomial expressions are comparatively large: 57.4 MBA alternations
and 306.1 AST nodes on average.

Table 6: MBA-Solver dataset results [13]

Tool ≡ ≈ × Timeout %

SSPAM N/A 705 320 1 975 34.2
Syntia N/A 437 2 563 0 14.6

MBA-Blast N/A 1 763 0 1 237 58.8
MBA-Solver N/A 2 899 0 101 96.6
MBA-Flatten 2 500 443 0 57 98.1

SiMBA 1 757 87 1 156 0 61.5
GAMBA 2 998 2 0 0 100.0

Simplification results are shown in Table 6. MBA-Solver manages to solve 2 899 expression, but
depends on subexpressions as additional input to steer the simplification process. MBA-Flatten
produces 2 500 results equivalent to the ground truth and can additionally provide 443 semantically
equivalent solutions. SiMBA can return results not only for linear expressions, but also for some
nonpolynomial MBAs; yet it cannot solve any of the polynomial MBA expressions, as they are
not reducible to linear ones. GAMBA can simplify all expression in the dataset, to an expression
equivalent to the ground truth in almost all cases.

While SiMBA’s average runtime for this dataset is 10.39 ms (median: 1.65 ms), that of GAMBA
is 19.12 ms (median: 11.96 ms).

6.5 QSynth EA

This dataset contains 500 nonpolynomial MBA expressions with up to 3 variables. The expressions
were generated with the Tigress obfuscator [3] by applying its EncodeArithmetic (EA) transform.
The expressions are large: 281.7 AST nodes on average. Furthermore, this dataset’s average number
of MBA alternations is 77.6, the highest in this comparison.

Table 7 shows that GAMBA can simplify 98.4% of these complex MBAs. For 61 expressions,
the equivalence to the corresponding ground truths can be verified. It is worth to note that for
the 8 runs where the verification was not successful (using verification methods iii or iv), in fact,
the expressions were drastically shorter as well. SiMBA can only simplify 45 expressions, as the
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remaining ones have no linear ground truth. MBA-Flatten is not included here since it cannot
handle the occurring variable names, shift operators and the MBAs’ general structure.

Table 7: QSynth EA dataset results [4], timeout 1 min

Tool ≡ ≈ × Timeout %

QSynth N/A 354 146 0 69.0
SiMBA 45 0 455 0 9.0

GAMBA 431 61 8 0 98.4

It takes SiMBA 0.81 ms on the average (median: 0.59 ms) to solve those expressions that it can
solve. GAMBA runs 134.18 ms on the average (median: 53.95 ms). Figure 2 demonstrates the high
variance of GAMBA’s runtimes when applied to the QSynth EA dataset. The maximum runtime is
about 3 082.2 ms while most runs take fractions of a second. It is also notable that all equivalences
in column ≈ were proved by GAMBA itself, i.e., usage of Z3 was not required.

Figure 2: Boxplot of GAMBA’s runtimes on QSynth EA

0 0.5 1 1.5 2 2.5 3 s

Since this is the most complex dataset, we additionally consider the complexities of the original
MBAs as well of the results. Figure 3 shows statistics on the numbers of nodes of the original
expressions as well as of their ground truths, indicating that we have a variety of very differently
complex expressions.

Figure 3: Boxplots describing the QSynth EA dataset: number of nodes of (a) e and (b) ground
truth e?

0 500 1,000 1,500 2,000 2,500

(a)

0 10 20 30

(b)

In Figure 4 we consider statistics of the results of runs in which GAMBA could not derive the
exact ground truths as results. Interestingly, the deviance in complexity is in general not larger
when GAMBA completely fails to show an equivalence. Also notably, GAMBA’s results are in rare
cases even simpler than the desired ones.

We omit detailed results for the QSynth Syntia and EA-ED datasets which contain even more
complex expressions (up to 5 000 000 characters per expression); the majority of expressions is solv-
able, with a few timeouts.

6.6 Summary

SiMBA can not only be applied to linear expressions, but also to nonlinear expressions that are
reducible to linear ones. We observed that it simplified all expressions in whose ground truths are
linear correctly.

Further, we see that GAMBA can simplify almost all MBAs to the exact same result as the
corresponding ground truth, and it does so quickly (within 50 ms typically, there are few outlines
in the datasets). However, GAMBA is about ten times slower compared to SiMBA on the datasets.
The QSynth EA dataset is the hardest to simplify. We want to emphasize that even in case of
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Figure 4: Deviances in the numbers of nodes from ground truths of equivalent (≈) and failed (×)
runs of GAMBA on the QSynth EA dataset

0 50 100 150

failure7 (×), GAMBA’s results are usually drastically reduced compared to the input MBA and
quite close to the corresponding ground truths. We have not observed any expression which could
not be simplified significantly.

GAMBA’s runtimes are, as expected, higher than SiMBA’s, but still very practical. Even for
linear MBAs, GAMBA first has to parse them and figure out that they are linear before they are
simplified via a call to SiMBA. For nonlinear MBAs, it performs additional refinement steps as well
as substitutions and calls SiMBA multiple times.

7 Conclusion

In this paper we have extended the algorithm presented in [19] and its range of possible applications.
We have seen in Section 6 that it is, in the current state of development, already a powerful tool
that can simplify a wide variety of expressions.

Our substitution logic and refinement steps make GAMBA solve MBAs which comparable tools
cannot simplify. For instance, many tools have problems with large – apparently random – constants,
and nonlinear expressions as operands of bitwise operators. Besides, GAMBA can solve MBAs whose
linear parts are obscured via expansion of products to a certain degree.

We experienced the biggest challenge with MBAs that use a high number of variables and can-
not be split into expressions with fewer variables in a meaningful way, and with MBAs that have
constants within bitwise operations. The substitution logic may be faced with problems when sub-
stituting all constants by variables, and furthermore doing so will obscure the relation between the
constants. Hence one may hope that the refinement techniques will make the constants vanish.

We believe SiMBA and GAMBA are valuable tools for the analysis of code obfuscated with
MBA expressions. They are straightforward to use and can be easily deployed in program analysis
frameworks.

In spite of the challenges mentioned above, we are convinced to have shown that in general every
MBA is solvable, independently of its type or complexity. We summarize our main contributions in
this paper:

1. We have extended the linear simplifier SiMBA such that it finds linear combinations of an
unnegated and a negated bitwise expression as well as of two negated ones, closing the gap to
be able to find simplest solutions in all cases for two variables.

2. We have introduced various metrics and exhaustively search the space of all possible solutions
in order to find the one minimizing a given metric. We have emphasized that result vectors
can often be decomposed in a large number of ways and those may imply solutions of very
different complexity.

3. We have extended SiMBA to find simple solutions for any number of variables, including more
than three.

7Note that “failure” means that we cannot verify an MBA’s equivalence to the groundtruth using GAMBA or Z3.
However, we checked the solutions numerically for a large number of inputs.
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4. In this course, we have described how to generate bitwise expressions that fit given truth value
vectors.

5. We have introduced the powerful, open-source algorithm GAMBA for simplifying nonlinear
MBAs of any kind, applicable to a wide range of inputs MBAs.

6. In contrast to existing algebraic simplifiers, GAMBA is able to simplify expressions that have
constants or arithmetic operations within bitwise operations.

7. We have given arguments suggesting that any kind of MBA is simplifiable by algebraic means.
GAMBA can solve all public datasets known to us and has good performance, as our experi-
ments show.

Data Availability

GAMBA’s source code is on Github [20]. Datasets used for experiments are referenced in Subsec-
tion 6.
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