Mercurial > hg > audiostuff
comparison intercom/aec.h @ 2:13be24d74cd2
import intercom-0.4.1
| author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
|---|---|
| date | Fri, 25 Jun 2010 09:57:52 +0200 |
| parents | |
| children | c6c5a16ce2f2 |
comparison
equal
deleted
inserted
replaced
| 1:9cadc470e3da | 2:13be24d74cd2 |
|---|---|
| 1 /* aec.h | |
| 2 * | |
| 3 * Copyright (C) DFS Deutsche Flugsicherung (2004, 2005). | |
| 4 * All Rights Reserved. | |
| 5 * Author: Andre Adrian | |
| 6 * | |
| 7 * Acoustic Echo Cancellation Leaky NLMS-pw algorithm | |
| 8 * | |
| 9 * Version 0.3 filter created with www.dsptutor.freeuk.com | |
| 10 * Version 0.3.1 Allow change of stability parameter delta | |
| 11 * Version 0.4 Leaky Normalized LMS - pre whitening algorithm | |
| 12 */ | |
| 13 | |
| 14 #ifndef _AEC_H /* include only once */ | |
| 15 | |
| 16 // use double if your CPU does software-emulation of float | |
| 17 typedef float REAL; | |
| 18 | |
| 19 /* dB Values */ | |
| 20 const REAL M0dB = 1.0f; | |
| 21 const REAL M3dB = 0.71f; | |
| 22 const REAL M6dB = 0.50f; | |
| 23 const REAL M9dB = 0.35f; | |
| 24 const REAL M12dB = 0.25f; | |
| 25 const REAL M18dB = 0.125f; | |
| 26 const REAL M24dB = 0.063f; | |
| 27 | |
| 28 /* dB values for 16bit PCM */ | |
| 29 /* MxdB_PCM = 32767 * 10 ^(x / 20) */ | |
| 30 const REAL M10dB_PCM = 10362.0f; | |
| 31 const REAL M20dB_PCM = 3277.0f; | |
| 32 const REAL M25dB_PCM = 1843.0f; | |
| 33 const REAL M30dB_PCM = 1026.0f; | |
| 34 const REAL M35dB_PCM = 583.0f; | |
| 35 const REAL M40dB_PCM = 328.0f; | |
| 36 const REAL M45dB_PCM = 184.0f; | |
| 37 const REAL M50dB_PCM = 104.0f; | |
| 38 const REAL M55dB_PCM = 58.0f; | |
| 39 const REAL M60dB_PCM = 33.0f; | |
| 40 const REAL M65dB_PCM = 18.0f; | |
| 41 const REAL M70dB_PCM = 10.0f; | |
| 42 const REAL M75dB_PCM = 6.0f; | |
| 43 const REAL M80dB_PCM = 3.0f; | |
| 44 const REAL M85dB_PCM = 2.0f; | |
| 45 const REAL M90dB_PCM = 1.0f; | |
| 46 | |
| 47 const REAL MAXPCM = 32767.0f; | |
| 48 | |
| 49 /* Design constants (Change to fine tune the algorithms */ | |
| 50 | |
| 51 /* The following values are for hardware AEC and studio quality | |
| 52 * microphone */ | |
| 53 | |
| 54 /* NLMS filter length in taps (samples). A longer filter length gives | |
| 55 * better Echo Cancellation, but maybe slower convergence speed and | |
| 56 * needs more CPU power (Order of NLMS is linear) */ | |
| 57 #define NLMS_LEN (100*WIDEB*8) | |
| 58 | |
| 59 /* Vector w visualization length in taps (samples). | |
| 60 * Must match argv value for wdisplay.tcl */ | |
| 61 #define DUMP_LEN (40*WIDEB*8) | |
| 62 | |
| 63 /* minimum energy in xf. Range: M70dB_PCM to M50dB_PCM. Should be equal | |
| 64 * to microphone ambient Noise level */ | |
| 65 const REAL NoiseFloor = M55dB_PCM; | |
| 66 | |
| 67 /* Leaky hangover in taps. | |
| 68 */ | |
| 69 const int Thold = 60 * WIDEB * 8; | |
| 70 | |
| 71 // Adrian soft decision DTD | |
| 72 // left point. X is ratio, Y is stepsize | |
| 73 const float STEPX1 = 1.0, STEPY1 = 1.0; | |
| 74 // right point. STEPX2=2.0 is good double talk, 3.0 is good single talk. | |
| 75 const float STEPX2 = 2.5, STEPY2 = 0; | |
| 76 const float ALPHAFAST = 1.0f / 100.0f; | |
| 77 const float ALPHASLOW = 1.0f / 20000.0f; | |
| 78 | |
| 79 | |
| 80 | |
| 81 /* Ageing multiplier for LMS memory vector w */ | |
| 82 const REAL Leaky = 0.9999f; | |
| 83 | |
| 84 /* Double Talk Detector Speaker/Microphone Threshold. Range <=1 | |
| 85 * Large value (M0dB) is good for Single-Talk Echo cancellation, | |
| 86 * small value (M12dB) is good for Doulbe-Talk AEC */ | |
| 87 const REAL GeigelThreshold = M6dB; | |
| 88 | |
| 89 /* for Non Linear Processor. Range >0 to 1. Large value (M0dB) is good | |
| 90 * for Double-Talk, small value (M12dB) is good for Single-Talk */ | |
| 91 const REAL NLPAttenuation = M12dB; | |
| 92 | |
| 93 /* Below this line there are no more design constants */ | |
| 94 | |
| 95 | |
| 96 /* Exponential Smoothing or IIR Infinite Impulse Response Filter */ | |
| 97 class IIR_HP { | |
| 98 REAL x; | |
| 99 | |
| 100 public: | |
| 101 IIR_HP() { | |
| 102 x = 0.0f; | |
| 103 } | |
| 104 | |
| 105 REAL highpass(REAL in) { | |
| 106 const REAL a0 = 0.01f; /* controls Transfer Frequency */ | |
| 107 /* Highpass = Signal - Lowpass. Lowpass = Exponential Smoothing */ | |
| 108 x += a0 * (in - x); | |
| 109 return in - x; | |
| 110 }; | |
| 111 }; | |
| 112 | |
| 113 #if WIDEB==1 | |
| 114 /* 17 taps FIR Finite Impulse Response filter | |
| 115 * Coefficients calculated with | |
| 116 * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html | |
| 117 */ | |
| 118 class FIR_HP_300Hz { | |
| 119 REAL z[18]; | |
| 120 | |
| 121 public: | |
| 122 FIR_HP_300Hz() { | |
| 123 memset(this, 0, sizeof(FIR_HP_300Hz)); | |
| 124 } | |
| 125 | |
| 126 REAL highpass(REAL in) { | |
| 127 const REAL a[18] = { | |
| 128 // Kaiser Window FIR Filter, Filter type: High pass | |
| 129 // Passband: 300.0 - 4000.0 Hz, Order: 16 | |
| 130 // Transition band: 75.0 Hz, Stopband attenuation: 10.0 dB | |
| 131 -0.034870606, -0.039650206, -0.044063766, -0.04800318, | |
| 132 -0.051370874, -0.054082647, -0.056070227, -0.057283327, | |
| 133 0.8214126, -0.057283327, -0.056070227, -0.054082647, | |
| 134 -0.051370874, -0.04800318, -0.044063766, -0.039650206, | |
| 135 -0.034870606, 0.0 | |
| 136 }; | |
| 137 memmove(z + 1, z, 17 * sizeof(REAL)); | |
| 138 z[0] = in; | |
| 139 REAL sum0 = 0.0, sum1 = 0.0; | |
| 140 int j; | |
| 141 | |
| 142 for (j = 0; j < 18; j += 2) { | |
| 143 // optimize: partial loop unrolling | |
| 144 sum0 += a[j] * z[j]; | |
| 145 sum1 += a[j + 1] * z[j + 1]; | |
| 146 } | |
| 147 return sum0 + sum1; | |
| 148 } | |
| 149 }; | |
| 150 | |
| 151 #else | |
| 152 | |
| 153 /* 35 taps FIR Finite Impulse Response filter | |
| 154 * Passband 150Hz to 4kHz for 8kHz sample rate, 300Hz to 8kHz for 16kHz | |
| 155 * sample rate. | |
| 156 * Coefficients calculated with | |
| 157 * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html | |
| 158 */ | |
| 159 class FIR_HP_300Hz { | |
| 160 REAL z[36]; | |
| 161 | |
| 162 public: | |
| 163 FIR_HP_300Hz() { | |
| 164 memset(this, 0, sizeof(FIR_HP_300Hz)); | |
| 165 } | |
| 166 | |
| 167 REAL highpass(REAL in) { | |
| 168 const REAL a[36] = { | |
| 169 // Kaiser Window FIR Filter, Filter type: High pass | |
| 170 // Passband: 150.0 - 4000.0 Hz, Order: 34 | |
| 171 // Transition band: 34.0 Hz, Stopband attenuation: 10.0 dB | |
| 172 -0.016165324, -0.017454365, -0.01871232, -0.019931411, | |
| 173 -0.021104068, -0.022222936, -0.02328091, -0.024271343, | |
| 174 -0.025187887, -0.02602462, -0.026776174, -0.027437767, | |
| 175 -0.028004972, -0.028474221, -0.028842418, -0.029107114, | |
| 176 -0.02926664, 0.8524841, -0.02926664, -0.029107114, | |
| 177 -0.028842418, -0.028474221, -0.028004972, -0.027437767, | |
| 178 -0.026776174, -0.02602462, -0.025187887, -0.024271343, | |
| 179 -0.02328091, -0.022222936, -0.021104068, -0.019931411, | |
| 180 -0.01871232, -0.017454365, -0.016165324, 0.0 | |
| 181 }; | |
| 182 memmove(z + 1, z, 35 * sizeof(REAL)); | |
| 183 z[0] = in; | |
| 184 REAL sum0 = 0.0, sum1 = 0.0; | |
| 185 int j; | |
| 186 | |
| 187 for (j = 0; j < 36; j += 2) { | |
| 188 // optimize: partial loop unrolling | |
| 189 sum0 += a[j] * z[j]; | |
| 190 sum1 += a[j + 1] * z[j + 1]; | |
| 191 } | |
| 192 return sum0 + sum1; | |
| 193 } | |
| 194 }; | |
| 195 #endif | |
| 196 | |
| 197 /* Recursive single pole IIR Infinite Impulse response High-pass filter | |
| 198 * | |
| 199 * Reference: The Scientist and Engineer's Guide to Digital Processing | |
| 200 * | |
| 201 * output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1] | |
| 202 * | |
| 203 * X = exp(-2.0 * pi * Fc) | |
| 204 * A0 = (1 + X) / 2 | |
| 205 * A1 = -(1 + X) / 2 | |
| 206 * B1 = X | |
| 207 * Fc = cutoff freq / sample rate | |
| 208 */ | |
| 209 class IIR1 { | |
| 210 REAL in0, out0; | |
| 211 REAL a0, a1, b1; | |
| 212 | |
| 213 public: | |
| 214 IIR1() { | |
| 215 memset(this, 0, sizeof(IIR1)); | |
| 216 } | |
| 217 | |
| 218 void init(REAL Fc) { | |
| 219 b1 = expf(-2.0f * M_PI * Fc); | |
| 220 a0 = (1.0f + b1) / 2.0f; | |
| 221 a1 = -a0; | |
| 222 in0 = 0.0f; | |
| 223 out0 = 0.0f; | |
| 224 } | |
| 225 | |
| 226 REAL highpass(REAL in) { | |
| 227 REAL out = a0 * in + a1 * in0 + b1 * out0; | |
| 228 in0 = in; | |
| 229 out0 = out; | |
| 230 return out; | |
| 231 } | |
| 232 }; | |
| 233 | |
| 234 | |
| 235 /* Recursive two pole IIR Infinite Impulse Response filter | |
| 236 * Coefficients calculated with | |
| 237 * http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFiltDes102.html | |
| 238 */ | |
| 239 class IIR2 { | |
| 240 REAL x[2], y[2]; | |
| 241 | |
| 242 public: | |
| 243 IIR2() { | |
| 244 memset(this, 0, sizeof(IIR2)); | |
| 245 } | |
| 246 | |
| 247 REAL highpass(REAL in) { | |
| 248 // Butterworth IIR filter, Filter type: HP | |
| 249 // Passband: 2000 - 4000.0 Hz, Order: 2 | |
| 250 const REAL a[] = { 0.29289323f, -0.58578646f, 0.29289323f }; | |
| 251 const REAL b[] = { 1.3007072E-16f, 0.17157288f }; | |
| 252 REAL out = | |
| 253 a[0] * in + a[1] * x[0] + a[2] * x[1] - b[0] * y[0] - b[1] * y[1]; | |
| 254 | |
| 255 x[1] = x[0]; | |
| 256 x[0] = in; | |
| 257 y[1] = y[0]; | |
| 258 y[0] = out; | |
| 259 return out; | |
| 260 } | |
| 261 }; | |
| 262 | |
| 263 | |
| 264 // Extention in taps to reduce mem copies | |
| 265 #define NLMS_EXT (10*8) | |
| 266 | |
| 267 // block size in taps to optimize DTD calculation | |
| 268 #define DTD_LEN 16 | |
| 269 | |
| 270 | |
| 271 class AEC { | |
| 272 // Time domain Filters | |
| 273 IIR_HP acMic, acSpk; // DC-level remove Highpass) | |
| 274 FIR_HP_300Hz cutoff; // 150Hz cut-off Highpass | |
| 275 REAL gain; // Mic signal amplify | |
| 276 IIR1 Fx, Fe; // pre-whitening Highpass for x, e | |
| 277 | |
| 278 // Adrian soft decision DTD (Double Talk Detector) | |
| 279 REAL dfast, xfast; | |
| 280 REAL dslow, xslow; | |
| 281 | |
| 282 // NLMS-pw | |
| 283 REAL x[NLMS_LEN + NLMS_EXT]; // tap delayed loudspeaker signal | |
| 284 REAL xf[NLMS_LEN + NLMS_EXT]; // pre-whitening tap delayed signal | |
| 285 REAL w[NLMS_LEN]; // tap weights | |
| 286 int j; // optimize: less memory copies | |
| 287 double dotp_xf_xf; // double to avoid loss of precision | |
| 288 float delta; // noise floor to stabilize NLMS | |
| 289 | |
| 290 // AES | |
| 291 float aes_y2; // not in use! | |
| 292 | |
| 293 // w vector visualization | |
| 294 REAL ws[DUMP_LEN]; // tap weights sums | |
| 295 int fdwdisplay; // TCP file descriptor | |
| 296 int dumpcnt; // wdisplay output counter | |
| 297 | |
| 298 /* Double-Talk Detector | |
| 299 * | |
| 300 * in d: microphone sample (PCM as REALing point value) | |
| 301 * in x: loudspeaker sample (PCM as REALing point value) | |
| 302 * return: from 0 for doubletalk to 1.0 for single talk | |
| 303 */ | |
| 304 float dtd(REAL d, REAL x); | |
| 305 | |
| 306 void AEC::leaky(); | |
| 307 | |
| 308 /* Normalized Least Mean Square Algorithm pre-whitening (NLMS-pw) | |
| 309 * The LMS algorithm was developed by Bernard Widrow | |
| 310 * book: Haykin, Adaptive Filter Theory, 4. edition, Prentice Hall, 2002 | |
| 311 * | |
| 312 * in d: microphone sample (16bit PCM value) | |
| 313 * in x_: loudspeaker sample (16bit PCM value) | |
| 314 * in stepsize: NLMS adaptation variable | |
| 315 * return: echo cancelled microphone sample | |
| 316 */ | |
| 317 REAL nlms_pw(REAL d, REAL x_, float stepsize); | |
| 318 | |
| 319 public: | |
| 320 // variables are public for visualization | |
| 321 int hangover; | |
| 322 float stepsize; | |
| 323 AEC(); | |
| 324 | |
| 325 /* Acoustic Echo Cancellation and Suppression of one sample | |
| 326 * in d: microphone signal with echo | |
| 327 * in x: loudspeaker signal | |
| 328 * return: echo cancelled microphone signal | |
| 329 */ | |
| 330 int AEC::doAEC(int d_, int x_); | |
| 331 | |
| 332 float AEC::getambient() { | |
| 333 return dfast; | |
| 334 }; | |
| 335 void AEC::setambient(float Min_xf) { | |
| 336 dotp_xf_xf -= delta; // subtract old delta | |
| 337 delta = (NLMS_LEN-1) * Min_xf * Min_xf; | |
| 338 dotp_xf_xf += delta; // add new delta | |
| 339 }; | |
| 340 void AEC::setgain(float gain_) { | |
| 341 gain = gain_; | |
| 342 }; | |
| 343 void AEC::openwdisplay(); | |
| 344 void AEC::setaes(float aes_y2_) { | |
| 345 aes_y2 = aes_y2_; | |
| 346 }; | |
| 347 double AEC::max_dotp_xf_xf(double u); | |
| 348 }; | |
| 349 | |
| 350 #define _AEC_H | |
| 351 #endif |
