Mercurial > hg > wm
comparison Meerwald/sort.c @ 0:be303a3f5ea8
import
| author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
|---|---|
| date | Sun, 12 Aug 2007 13:14:34 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:be303a3f5ea8 |
|---|---|
| 1 #include "sort.h" | |
| 2 | |
| 3 #define SWAP_GRAY(A, B) {gray t = A; A = B; B = t;} | |
| 4 | |
| 5 /* | |
| 6 * quicksort-alike, from the EMX library (emx/src/lib/misc/qsort.c) | |
| 7 * by Eberhard Mattes | |
| 8 * | |
| 9 * sort() is not stable, the order of equal elements is not defined | |
| 10 */ | |
| 11 | |
| 12 void _sort_grays(gray *l, gray *r) { | |
| 13 gray *i; | |
| 14 gray *j; | |
| 15 gray *x; | |
| 16 | |
| 17 redo: | |
| 18 i = l; | |
| 19 j = r; | |
| 20 x = l + sizeof(gray) * (((r-l) / sizeof(gray)) / 2); | |
| 21 | |
| 22 do { | |
| 23 while (i != x && *i < *x) | |
| 24 i++; | |
| 25 while (j != x && *j > *x) | |
| 26 j--; | |
| 27 if (i < j) { | |
| 28 SWAP_GRAY(*i, *j); | |
| 29 if (x == i) | |
| 30 x = j; | |
| 31 else if (x == j) | |
| 32 x = i; | |
| 33 } | |
| 34 if (i <= j) { | |
| 35 i++; | |
| 36 if (j > l) | |
| 37 j--; | |
| 38 } | |
| 39 } while (i <= j); | |
| 40 | |
| 41 if (j-l < r-i) { | |
| 42 if (l < j) | |
| 43 _sort_grays(l, j); | |
| 44 if (i < r) { | |
| 45 l = i; | |
| 46 goto redo; | |
| 47 } | |
| 48 } | |
| 49 else { | |
| 50 if (i < r) | |
| 51 _sort_grays(i, r); | |
| 52 if (l < j) { | |
| 53 r = j; | |
| 54 goto redo; | |
| 55 } | |
| 56 } | |
| 57 } | |
| 58 | |
| 59 void sort_grays(gray a[], int n) { | |
| 60 if (n > 1) | |
| 61 _sort_grays(&a[0], &a[n-1]); | |
| 62 } | |
| 63 | |
| 64 /* | |
| 65 * select_largest(), from the Numeric Recipes in C, Chapter 8, p. 344, | |
| 66 * see http://www.nr.com | |
| 67 * | |
| 68 * returns in largest[0..m-1] the largest m elements of array[0..n-1] | |
| 69 * with largest[0] guaranteed to be the mth largest element; largest[] is | |
| 70 * not sorted; the array[] is not altered; this function should be used | |
| 71 * only when m << n | |
| 72 */ | |
| 73 | |
| 74 void select_largest_grays(gray array[], int n, int m, gray largest[]) { | |
| 75 int i, j, k; | |
| 76 | |
| 77 if (m <= 0 || m > n/2) | |
| 78 return; | |
| 79 | |
| 80 for (i = 0; i < m; i++) | |
| 81 largest[i] = array[i]; | |
| 82 sort_grays(largest, m); | |
| 83 | |
| 84 for (i = m; i < n; i++) { | |
| 85 if (array[i] > largest[0]) { | |
| 86 largest[0] = array[i]; | |
| 87 j = 0; | |
| 88 k = 1; | |
| 89 while (k < m) { | |
| 90 if (k < m-1 && largest[k] > largest[k+1]) | |
| 91 k++; | |
| 92 if (largest[j] <= largest[k]) | |
| 93 break; | |
| 94 SWAP_GRAY(largest[k], largest[j]); | |
| 95 j = k; | |
| 96 k = k << 1; | |
| 97 } | |
| 98 } | |
| 99 } | |
| 100 } | |
| 101 | |
| 102 #define SWAP_DOUBLE(A, B) {double t = A; A = B; B = t;} | |
| 103 | |
| 104 void _sort_coeffs(double *l, double *r) { | |
| 105 double *i; | |
| 106 double *j; | |
| 107 double *x; | |
| 108 | |
| 109 redo: | |
| 110 i = l; | |
| 111 j = r; | |
| 112 x = l + sizeof(double) * (((r-l) / sizeof(double)) / 2); | |
| 113 | |
| 114 do { | |
| 115 while (i != x && *i < *x) | |
| 116 i++; | |
| 117 while (j != x && *j > *x) | |
| 118 j--; | |
| 119 if (i < j) { | |
| 120 SWAP_DOUBLE(*i, *j); | |
| 121 if (x == i) | |
| 122 x = j; | |
| 123 else if (x == j) | |
| 124 x = i; | |
| 125 } | |
| 126 if (i <= j) { | |
| 127 i++; | |
| 128 if (j > l) | |
| 129 j--; | |
| 130 } | |
| 131 } while (i <= j); | |
| 132 | |
| 133 if (j-l < r-i) { | |
| 134 if (l < j) | |
| 135 _sort_coeffs(l, j); | |
| 136 if (i < r) { | |
| 137 l = i; | |
| 138 goto redo; | |
| 139 } | |
| 140 } | |
| 141 else { | |
| 142 if (i < r) | |
| 143 _sort_coeffs(i, r); | |
| 144 if (l < j) { | |
| 145 r = j; | |
| 146 goto redo; | |
| 147 } | |
| 148 } | |
| 149 } | |
| 150 | |
| 151 void sort_coeffs(double a[], int n) { | |
| 152 if (n > 1) | |
| 153 _sort_coeffs(&a[0], &a[n-1]); | |
| 154 } | |
| 155 | |
| 156 void select_largest_coeffs(double array[], int n, int m, double largest[]) { | |
| 157 int i, j, k; | |
| 158 | |
| 159 if (m <= 0 || m > n/2) | |
| 160 return; | |
| 161 | |
| 162 for (i = 0; i < m; i++) | |
| 163 largest[i] = array[i]; | |
| 164 sort_coeffs(largest, m); | |
| 165 | |
| 166 for (i = m; i < n; i++) { | |
| 167 if (array[i] > largest[0]) { | |
| 168 largest[0] = array[i]; | |
| 169 j = 0; | |
| 170 k = 1; | |
| 171 while (k < m) { | |
| 172 if (k < m-1 && largest[k] > largest[k+1]) | |
| 173 k++; | |
| 174 if (largest[j] <= largest[k]) | |
| 175 break; | |
| 176 SWAP_DOUBLE(largest[k], largest[j]); | |
| 177 j = k; | |
| 178 k = k << 1; | |
| 179 } | |
| 180 } | |
| 181 } | |
| 182 } | |
| 183 | |
| 184 |
