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Abstract

1. Link Group Testing (GT) and Traitor Tracing (TT)

2. Apply our Traitor Tracing decoding algorithm to Group Testing

What is Group Testing?

Epidemiology: Identify a small set of virally-infected people in a large population.
It is too expensive to test all the blood samples.

Setup N : population size, K: number of infected, T : number of pools of blood samples

Pooling Design a contact matrix M ∈ B
T×N : Mij = 1 if test i uses blood of person j.

Testing Realize T tests in parallel: results y ∈ B
T×1 which depend on {Mj|j ∈ K}

If the testing procedure is perfect: y = M⊗ x (where x the indicator vector).
In practice:

q: False positive probability Test is positive whereas no infected triggers it.
u: Dilution factor. One infected triggers the test with probability (1− u).

Decoding Identify the infected persons: binary vector x̂ ∈ B
T×1.

Goal Minimize the number of tests T .

What is Traitor Tracing?

Content Security: Identify a small set of dishonest users illegally distributing their copies of Video-
on-Demand movies. Embed the user’s codeword in his content copy (versioning by watermarking).

Setup N : number of a VoD portal users, K: number of colluders, T : bits in codeword

Coding Design a binary code matrix M ∈ B
T×N .

Collusion The colluders mix their copies to forge a pirated copy. The watermark decoder
retrieves the pirated sequence y ∈ B

T×1. Marking assumption: yi ∈ {Mij1, · · · ,MijK}.

Decoding Identify the colluders: binary vector x̂ ∈ B
N×1.

Goal Minimize the number of bits T to be embedded in the content.

Differences

Requirements What does matter is ...

GT: Probability of false negative → Missing at least one infected patient.
TT: Probability of false positive → Avoid accusing at least one innocent user.

Nuisance parameters What do we know?
GT: K is unknown, but (u, q) are accurately measured (depends on biological test).
TT: Collusion strategy is unknown, but, yi = x if Mij1 = · · · = MijK = x.

TT is a harder problem than GT: T = O(K2 logN ) versus T = O(K logN )

Similarities

Mj1 = M1j1 M2j1 · · · MTj1
Mj2 = M1j2 M2j2 · · · MTj2
... = ... ... ... ...

MjK = M1jK M2jK · · · MTjK

y = y1 y2 · · · yT

Mathematical Model How is y related to the codewords {Mj|j ∈ K}?
=⇒ Think of y as a random vector.

TT: Collusion strategy θ s.t. θk = P[Yi = 1|
∑

j∈KMij = k]

GT: The same model holds. θk = P[Yi = 1|
∑

j∈KMij = k] = 1− (1− q)uk.

Application of TT methods to GT

Generation of Matrix M

In TT, the Tardos Code [1] is the optimum code construction: matrix M is randomly drawn!

1. Randomly draw T variables pi
i.i.d∼ f (p) with f (p) : (0, 1) → R

+

2. Randomly draw Mij s.t. P(Mij = 1) = pi

Probabilities

Thanks to the probabilistic construction of M and the mathematical model based on θ:

P(Y = 1|p,K) =

K
∑

k=0

P(Y = 1|k infected ) · P(k infected |p,K)

=

K
∑

k=0

θ(k)

(

K

k

)

pk(1− p)(K−k) = 1− (1− q)(1− p + up)K.

There are similar expressions for the following cases:

We know the identity of one infected: P(Yi = 1|Mij, pi,K)
We know the identities of ℓ infected: P(Yi = 1|Σi, pi,K) with Σi = (Mij1, · · · ,Mijℓ)

Mutual Information

This allows us to compute I(Y ;X|p,K) and to find p⋆(K) = argmax I(Y ;X|p).
But we do not know K. Assume that K ∈ [K,K ], and choose f = U[p⋆(K),p⋆(K)].
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I(Y ;X|p) in nats as a function of p. (left) (q, u) = (0, 0.2), (right) (q, u) = (0.01, 0.05).
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Decoding

Estimation of K If (u, q) 6= (1, 1), then identifiable: K̂ = argmax
∑T

i=1 logP(Y = yi|pi,K)

Single decoder For each user, test the following hypothesis:

H0 Patient i is not infected: P(Y,Mj|P,K) = P(Y|P,K) · P(Mj|P)
H1 Patient i is infected: P(Y,Mj|P,K) = P(Y|Mj,P,K) · P(Mj|P)

Score based on Log-Likelihood Ratio: sj =
∑T

i=1 log
P(yi|Mij,pi,K̂)

P(yi|pi,K̂)
Patients with the highest scores are more likely to be infected.

Joint decoder Compute scores for subsets of ℓ patients.
Inf. Theory tells scores more discriminative, but never done before because of complexity O(N ℓ).

sk =

T
∑

i=1

log
P(yi|Σik, p, K̂)

P(yi|pi, K̂)
with Σik = (Mij1, · · · ,Mijℓ)

1. Single decoder over population, and isolate ⌈
√
2!N⌉ persons with highest scores in S(2)

2. Pair decoder over S(2) and isolate ⌈ 3
√
3!N⌉ persons with highest scores in S(3)

3. Triple decoder over S(3)...

This idea is to gradually discard the less likely infected while maintaining a list of suspects short
enough to allow joint decoding with bigger subsets.

Side-Informed decoders Deem as infected the most likely individuals and include them in
the side-information set SI . Denote Ξi = {Mij|j ∈ SI}.

sk =

T
∑

i=1

log
P(yi|Σik

⋃

Ξi, p, K̂)

P(yi|Ξi, pi, K̂)
with Σik = (Mij1, · · · ,Mijℓ)

Experiments Comparison with prior art [2, 3, 4].
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(left) N = 105, K = 10, (q, u) = (0, 0.2) [2]; (right) N = 5000, K = 50, (q, u) = (0.01, 0.05) [3, 4]
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