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Construction of binary Tardos codes

To support n user, design a binary code matrix X of size n x m

» Randomly draw m variables p; Rt f(p) according to Tardos’s
arcsine distribution [Tardos, 2003]

» Randomly draw x;(/) such that P(x;(/) = 1) = p;

» Distribute content marked with x; to user j



Collusion attack

Colluders C = {j1,...,jc} forge a pirated copy y by combining their
codewords Xj,, ..., X;_.

C
X 011011..
X;
X3 101001...
Xy
Xs

010101..
y 011100...

The collusion strategy is denoted 8. = (6(0),...,0.(c)) with
0c(0) =P(Y =1]>_X;=9).
jec
Goal:

» identify one or more colluders given y, X and p

» maintaining the probability of accusing innocents < Py,



Accusation process

Single decoder: compute score per user
» invariant to collusion attack:

?
5 = 27;1 Y(i) : U(Xj(i),p,-) >T [Skoric et al., 2008]
or

» using an estimate of the collusion:

. o ) A 7
sj = 27;1 log W >T [Pérez-Freire & Furon, 2009]

more discriminative, but needs ¢ and accurate 0,

Joint decoder: compute score per subset of t users
» theoretically more discriminative
[Amiri & Tardos, 2009, Moulin, 2008]
> there are (]) user subsets — intractable, O(n")

» limited experimental results for t = 3 and n = 1000
[Nuida, 2010]



lterative, side-informed, joint Tardos decoding: Overview
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lterative, side-informed, joint Tardos decoding: Algorithm

Assume ¢ < Cmax, set side-information X5, = () and repeat
until |Xsi| > Cmax OF t > tmax:

1.

BN

10.

© o N o o

Infer collusion model 6 for Coax subject to X

Compute score per user (single decoder)

Compute accusation threshold 7 suject to Xs; and 6 given P,
If scores > T:

4.1 Accuse user(s) and update side-information Xs;; Go to 1.
Sett =2

Obtain most likely p(t) user suspects

Compute score per suspect subset (joint decoder)

Compute accusation threshold 7 suject to X5 and ] given Pg,
If top score > 7 :

9.1 Accuse most likely suspect in subset and update Xs;; Go to 1.
t =t+1and Go to 6.



Pruning suspects

O(nt) is intractable — limit number of suspects p(t)

Assumptions:
» more discriminative scores with each iteration
> likely colluders will move to top of suspect list

» likely innocents get pruned from the suspect list

Subset size (t) 1 2 3 4 6 8
Total subsets (7)  10° ~10" ~107 ~102 ~10% ~10%
Users suspected p®  10° 3000 300 103 41 29
Computed sub-
P 106 ~10° ~10° ~10° ~10° ~10°

set scores ("(:))



Score computation of subsets with side-information

The score is the log-likelihood ratio for a user subset T tuned on
the inference 6 and side-information X,.

Cmax
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Accumulated codewords of Xs; and T

@:ij- and p= ZXJ'
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The inference 0 is not an estimation of the collusion because

C # Cmax-
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9Cmax = argmax |OgP(y|p,0,X5|)
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Implementation Details

» Implemented decoder in C++, no parallization

» Fast: can do more than 108 scores per second for code length
m = 1024
» Runtime results for Intel Core2 CPU (E6700) at 2.6 GHz

» Suspect subsets are enumerated with revolving door algorithm.

Xs e Xg T 5

» Can use precomputed weights in score computation.



Results: Code length in catch-one scenario (1)

n=10° Py, = 1073, worst-case attack
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— Joint decoding reduces required code length.



Results: Code length in catch-one scenario (2)

n=10°% P, =103, worst-case attack

P D
Colluders (c)  [Nuida, 2009] roposed Decoder

Single Joint
2 253 ~ 344 ~ 232
3 877 ~ 752 ~b12
4 1454 ~ 1120 ~ 784
6 3640 ~ 2304 ~ 1536

8 6815 ~ 3712 ~ 2688



Results: Decoder stage making first accusation and runtime

n=10% c =4, Ps, = 1073, worst-case attack
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— Joint decoding improves performance for certain code length
with manageable runtime.



Results: Varying number of suspects for joint decoding

Constraints: tmax = 4 and (P\) = 105,106, ..., 10°
Hypothetical: real colluders are never purged

n=10% m=2384, c =4, P, = 1073, worst-case attack
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Results: Identified colluders in catch-many scenario

n=10% m = 2048, P, = 1073, cmax = 8, worst-case attack

T T
Single Decoder
Single, Side Informed -------
6 F Joint, Side Informed
Symmetric Tardos Decoder ----

Average Identified Colluders

Colluders (c)

— improvements over symmetric Tardos decoder



Summary

» Focused is on the accusation algorithm

» Thresholding is detailed in the paper: rare-event simulation

In practice what matters is false positive rate of the decoder.



Conclusion

Algorithm for binary Tardos decoding
» main features: practical, joint, scalable
> iterative process: side-information + pruning suspects
» discriminative scores without knowing collusion

> rare event simulation to control false-positive probability

Even small effort in joint decoding increases performance.
AFAIK best decoding performance for binary fingerprinting codes.

Source code available:
http://www.irisa.fr/texmex/people/furon/src.html


http://www.irisa.fr/texmex/people/furon/src.html
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