

Funded by national project MEDIEVALS ANR-07-AM-005.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Agenda

- Content fingerprinting using Tardos codes
- Iterative, side-informed Tardos decoding
- Inferences about the collusion model
- Making joint decoding affordable pruning suspects

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- Experimental results
 - Detection performance
 - Runtime analysis
- Conclusion

Construction of binary Tardos codes

To support *n* user, design a binary code matrix **X** of size $n \times m$

Randomly draw *m* variables p_i ~ *f(p)* according to Tardos's arcsine distribution [Tardos, 2003]

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- ▶ Randomly draw $x_j(i)$ such that $\mathbb{P}(x_j(i) = 1) = p_i$
- Distribute content marked with x_j to user j

Collusion attack

Colluders $C = \{j_1, \ldots, j_c\}$ forge a pirated copy **y** by combining their codewords $\mathbf{x}_{j_1}, \ldots, \mathbf{x}_{j_c}$.

The collusion strategy is denoted $\theta_c = (\theta_c(0), \dots, \theta_c(c))$ with

$$\boldsymbol{\theta}_{c}(\varphi) = \mathbb{P}(Y = 1 | \sum_{j \in \mathcal{C}} X_{j} = \varphi).$$

Goal:

- identify one or more colluders given y, X and p
- maintaining the probability of accusing innocents < P_{fp}

(ロ) (型) (E) (E) (E) (O)

Accusation process

Single decoder: compute score per user

invariant to collusion attack:

$$s_j = \sum_{i=1}^m y(i) \cdot U(x_j(i), p_i) \stackrel{?}{>} au$$
 [Skoric et al., 2008

or

using an estimate of the collusion:

$$s_j = \sum_{i=1}^m \log rac{\mathbb{P}(y(i)|x_j(i), p_i, \hat{ heta}_c)}{\mathbb{P}(y(i)|p_i, \hat{ heta}_c)} \stackrel{?}{>} au$$
 [Pérez-Freire & Furon, 2009]

more discriminative, but needs c and accurate $oldsymbol{ heta}_c$

Joint decoder: compute score per subset of t users

- theoretically more discriminative [Amiri & Tardos, 2009, Moulin, 2008]
- there are $\binom{n}{t}$ user subsets \rightarrow intractable, $O(n^t)$
- limited experimental results for t = 3 and n = 1000 [Nuida, 2010]

Iterative, side-informed, joint Tardos decoding: Overview

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 のへで

Iterative, side-informed, joint Tardos decoding: Algorithm

Assume $c < c_{\max}$, set side-information $\mathcal{X}_{SI} = \emptyset$ and repeat until $|\mathcal{X}_{SI}| \ge c_{\max}$ or $t > t_{\max}$:

- 1. Infer collusion model $\hat{ heta}$ for c_{\max} subject to $\mathcal{X}_{\mathsf{SI}}$
- 2. Compute score per user (single decoder)
- 3. Compute accusation threshold au suject to $\mathcal{X}_{\mathsf{SI}}$ and $\hat{m{ heta}}$ given P_{fp}
- 4. If scores $> \tau$:

4.1 Accuse user(s) and update side-information $\mathcal{X}_{SI};$ Go to 1.

- 5. Set t = 2
- 6. Obtain most likely $p^{(t)}$ user suspects
- 7. Compute score per suspect subset (joint decoder)
- 8. Compute accusation threshold au suject to $\mathcal{X}_{\mathsf{SI}}$ and $\hat{oldsymbol{ heta}}$ given P_{fp}
- 9. If top score $> \tau$:

9.1 Accuse most likely suspect in subset and update $\mathcal{X}_{\mathsf{SI}}$; Go to 1. 10. t=t+1 and Go to 6.

Pruning suspects

 $O(n^t)$ is intractable ightarrow limit number of suspects $p^{(t)}$

Assumptions:

- more discriminative scores with each iteration
- likely colluders will move to top of suspect list
- likely innocents get pruned from the suspect list

Subset size (t)	1	2	3	4	6	8
Total subsets $\binom{n}{t}$	10 ⁶	$\sim 10^{11}$	$\sim 10^{17}$	$\sim 10^{22}$	$\sim 10^{33}$	$\sim 10^{43}$
Users suspected $p^{(t)}$	10 ⁶	3000	300	103	41	29
Computed subset scores $\binom{p^{(t)}}{t}$	10 ⁶	$\sim 10^{6}$				

Score computation of subsets with side-information

The score is the log-likelihood ratio for a user subset \mathcal{T} tuned on the inference $\hat{\theta}_{c_{\max}}$ and side-information \mathcal{X}_{SI} .

$$s_{\mathcal{T}} = \sum_{i=1}^{m} \log \frac{\mathbb{P}(y(i)|\varphi(i), p_i, \hat{\boldsymbol{\theta}}_{c_{\max}}, \rho(i))}{\mathbb{P}(y(i)|p_i, \hat{\boldsymbol{\theta}}_{c_{\max}}, \rho(i))}$$

Accumulated codewords of \mathcal{X}_{SI} and \mathcal{T} :

$$arphi = \sum_{j \in \mathcal{T}} \mathsf{x}_j$$
 and $ho = \sum_{j \in \mathcal{X}_{\mathsf{SI}}} \mathsf{x}_j$

The inference $\hat{\theta}_{c_{\max}}$ is not an estimation of the collusion because $c \neq c_{\max}$.

$$\hat{\boldsymbol{\theta}}_{c_{\max}} = \operatorname*{arg\,max}_{\boldsymbol{\theta} \in [0,1]^{c_{\max}+1}} \log \mathbb{P}(\mathbf{y}|\mathbf{p},\boldsymbol{\theta},\mathcal{X}_{\mathsf{SI}}).$$

Implementation Details

- ▶ Implemented decoder in C++, no parallization
 - <u>Fast</u>: can do more than 10^6 scores per second for code length m = 1024
 - Runtime results for Intel Core2 CPU (E6700) at 2.6 GHz
- Suspect subsets are enumerated with revolving door algorithm.

Can use precomputed weights in score computation.

Results: Code length in catch-one scenario (1)

$$n = 10^6, P_{fp} = 10^{-3}, worst-case$$
 attack

 \rightarrow Joint decoding reduces required code length.

Results: Code length in catch-one scenario (2)

$$n=10^{6},\ P_{\mathrm{e}}=10^{-3},\ worst-case$$
 attack

Colluders (<i>c</i>)	[Nuida. 2009]	Proposed Decoder		
	[Single	Joint	
2	253	~ 344	~ 232	
3	877	\sim 752	~ 512	
4	1454	~ 1120	\sim 784	
6	3640	~ 2304	~ 1536	
8	6815	~ 3712	\sim 2688	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Results: Decoder stage making first accusation and runtime

$$n=10^6,\ c=4,\ P_{\rm fp}=10^{-3},\ worst$$
-case attack

 \rightarrow Joint decoding improves performance for certain code length with manageable runtime.

(日) (同) (日) (日)

э

Results: Varying number of suspects for joint decoding

Constraints: $t_{max} = 4$ and $\binom{p^{(t)}}{t} = 10^5, 10^6, \dots, 10^9$ Hypothetical: real colluders are never purged

 $n=10^6,\;m=384,\;c=4,\;P_{\mathrm{fp}}=10^{-3},\;worst\text{-}case$ attack

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Results: Identified colluders in catch-many scenario

$$n = 10^{6}$$
, $m = 2048$, $P_{\rm fp} = 10^{-3}$, $c_{\rm max} = 8$, worst-case attack

・ロト ・個ト ・モト ・モト

ж

 \rightarrow improvements over symmetric Tardos decoder

Summary

- Focused is on the accusation algorithm
- > Thresholding is detailed in the paper: rare-event simulation

(ロ)、

In practice what matters is false positive rate of the decoder.

Conclusion

Algorithm for binary Tardos decoding

- main features: practical, joint, scalable
- iterative process: side-information + pruning suspects
- discriminative scores without knowing collusion
- rare event simulation to control false-positive probability

Even small effort in joint decoding increases performance.

AFAIK best decoding performance for binary fingerprinting codes.

ション ふゆ く 山 マ チャット しょうくしゃ

Source code available: http://www.irisa.fr/texmex/people/furon/src.html

References

Amiri, E. & Tardos, G. (2009).

High rate fingerprinting codes and the fingerprinting capacity.

In Proc. ACM-SIAM Sym. on Discrete Algorithms, SODA '09 (pp. 336-345). New York, USA.

Moulin, P. (2008).

Universal fingerprinting: capacity and random-coding exponents. In Proc. IEEE Int. Symposium on Inf. Theory (pp. 220-224). Toronto, ON, Canada.

Nuida, K. (2009).

An improvement of discrete Tardos fingerprinting codes. Designs, Codes and Cryptography, 52(3), 339–362.

Nuida, K. (2010).

Short collusion-secure fingerprint codes against three pirates. In Proc. Information Hiding, IH '10, volume 6387 of LNCS (pp. 86–102). Calgary, Canada.

Pérez-Freire, L. & Furon, T. (2009).

Blind decoder for binary probabilistic traitor tracing codes. In Proc. IEEE Int. Workshop on Information Forensics and Security (pp. 56-60). London, UK.

Skoric, B., Katzenbeisser, S., & Celik, M. (2008).

Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. *Designs, Codes and Cryptography*, 46(2), 137–166.

Tardos, G. (2003).

Optimal probabilistic fingerprint codes. In Proc. 35th ACM Sym. on Theory of Computing (pp. 116-125). San Diego, CA, USA.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ