
Multi-Channel Noise/Echo Reduction in PulseAudio on
Embedded Linux

Karl FREIBERGER and Stefan HUBER and Peter MEERWALD
bct electronic GesmbH

Saalachstraße 88
A-5020 Salzburg, Austria

{k.freiberger, s.huber, p.meerwald}@bct-electronic.com

Abstract
Ambient noise and acoustic echo reduction are indis-
pensable signal processing steps in a hands-free au-
dio communication system. Taking the signals from
multiple microphones into account can help to more
effectively reduce disturbing noise and echo. This
paper outlines the design and implementation of a
multi-channel noise reduction and echo cancellation
module integrated in the PulseAudio sound system.
We discuss requirements, trade-offs and results ob-
tained from an embedded Linux platform.

Keywords
Acoustic echo cancellation, noise reduction, hands-
free telephony, beamforming, performance

1 Introduction

At bct electronic, we develop a speakerphone for
hands-free Voice over Internet Protocol (VoIP)
telephony and intercom. On our communica-
tion device, we run a custom embedded Linux
system created with OpenBricks1. The device
is designed for desktop or wall-mount use, has a
7” touch-screen and is powered by a TI OMAP3
processor (DM3730). Two independent hard-
ware audio codecs enable hands-free communi-
cation as well as hand-set or headset use at the
same time in order to support flexible intercom
and VoIP scenarios.

Speech quality is a very important criterion
for us. Therefore, our device is equipped with
a 4-channel array of digital, omnidirectional
MEMS microphones2. This allows to reduce
noise without distorting the desired speech sig-
nal [Souden et al., 2010]. However, elabo-
rate digital signal processing (DSP) is required
to achieve good speech quality in challenging
acoustic environments with high levels of ambi-
ent noise.

Several open-source software components are
available in our application area: SIP stacks

1http://www.openbricks.org
2http://mobiledevdesign.com/tutorials/

mems-microphones

(Linphone3, Sophia SIP4), audio compression
codecs (G722, Opus5), sound servers (JACK
[Davis, 2003], PulseAudio6), DSP primitives for
resampling and preprocessing (Speex7), to give
a few examples. Open-source SIP software has
gained support for single-channel acoustic echo
and noise reduction (AENR) recently. How-
ever, we are not aware of an open-source frame-
work for multi-channel audio communication
and AENR.

In section 2 we describe the acoustic setting
and the related challenges in AENR. The ba-
sic principles behind common methods are ex-
plained. In section 3 we motivate the use of
PulseAudio as a sound server and integrating
component of our software architecture and out-
line the design and implementation of a multi-
channel AENR plug-in module. While we can-
not release the DSP code at this point, several
improvements to PulseAudio have been made
available to enable multi-channel audio process-
ing on embedded Linux platforms. Section 4
outlines algorithms for multichannel AENR. We
have prototyped the algorithms in MATLAB
and Octave on the PC, transcribed the code
to C/C++, and successively adapted and opti-
mized the code to target the ARMv7 platform.
Runtime performance analysis and optimization
techniques are discussed in section 5. The test
setup and experimental results are detailed in
section 6. Finally, Section 7 summarizes results
and outlines further work.

2 Acoustic Echo and Noise
Reduction

The acoustic front-end of a basic speakerphone
comprises a microphone for picking up the near-
end speaker (NES) and a loudspeaker for play-

3http://www.linphone.org
4http://sofia-sip.sourceforge.net
5http://www.opus-codec.org
6http://www.pulseaudio.org
7http://www.speex.org



Near-End Speaker

From Far-End

Echo

Noise

To Far-End

Echo and Noise Reduction

M M

1

M

1

1

1

Echo path

Playback
Processing

M

Adaptive FilterPlayback
Device

Capture
Device

AEC Linear

Echo Suppr. 
Noise Red.

playback
device

S

Y

V

1

H

Sreverb

Eaec

Ĥ

X

D E

Ŷ

X̃

Figure 1: Near-end acoustic setting and general AENR system for one loudspeaker and M micro-
phone channels. For M > 1 the echo suppression & noise reduction module may include beam-
forming. The dashed, colored lines indicate room reflections.

ing back the far-end speaker (FES), see Fig. 1.
In practice, the captured microphone signal D
does not only contain the desired NES signal
S but also undesired components that degrade
speech intelligibility, namely room reverbera-
tion Sreverb, the so-called echo signal Y and an
additive noise signal V :

D = S + Sreverb + Y + V (1)

Here, Sreverb, Y and V are mutually uncorre-
lated, Sreverb is correlated (only) with S and
Y is correlated only with the playback signal
X, containing the FES. V denotes all other un-
wanted parts neither correlated with S nor X.
The challenge is to remove or at least reduce
the undesired components without (too much)
distortion of S.

2.1 Acoustic Echo

The echo signal can be written as Y = H{X},
where H{·} denotes the echo path system con-
sisting of playback device, loudspeaker, room,
microphone and capture device. The term
“echo signal” stems from the fact that Y is con-
tained in D and, thereby, a delayed and filtered
version of the FES signal X is sent back to the
far-end. It follows that if the near-end device
has an insufficient echo-reduction system, an
echo becomes obvious on the far-end. The larger
the delay of the echo, the more irritating is the
echo of a given level, cf. [Hänsler and Schmidt,
2004]. The overall delay of the echo signal con-
sists of delays due to capture and playback, the
acoustic path, the speech codec and VoIP trans-
mission. Because of the limited physical size of
a speakerphone, the loudspeaker is located close

to the microphone. The level of the echo might
hence be several times higher than that of the
NES. This makes high quality echo cancellation
and/or suppression indispensable.

The terms cancellation and suppression —
they are subsumed under the term reduction
in this paper — shall not be confused: The
idea behind echo cancellation is to find an es-
timate Ŷ of the echo and subtract it from the
microphone signal, i.e., Eaec = D − Ŷ , with
Ŷ = Ĥ{X}. By inserting D from Eq. (1), one
can see that Y can be fully removed without dis-
torting S if Y equals Ŷ . Most practical systems
use a linear adaptive filter with finite impulse
response (FIR) to identify and model the echo
path H. Nonlinear models exist, but are in less
widespread use due to their higher complexity
and slower convergence.

In practice, there are several reasons why the
adaptive filter does not fully cancel the echo
and a residual echo (RE) Yres remains in Eaec:
The adaptive FIR filter (i) does not model the
nonlinearity of the loudspeaker or a potential
clipping of the echo signal, (ii) is too short to
model the echo path impulse response h(t), (iii)
is too slow to follow changes of the echo path,
and (iv) does not fully converge or even diverge
due to double talk. As a consequence, Eaec is
usually further processed by a RE suppression
postfilter. The principle of suppression is to ap-
ply a real gain factor G(l, f) to the input of
the suppression filter. Because echo suppres-
sion is typically performed in the frequency do-
main or subbands of a filterbank, the indices
l and f are introduced to indicate the time-



and frequency-dependence, respectively. If D
is directly plugged into a suppression filter, we
have Esuppr(l, f) = D(l, f) ·G(l, f). Looking at
Eq. (1), we see that suppression of echo or noise
goes along with suppression of the NES S. Be-
cause Y and S do typically not fully overlap
in the time-frequency plane, duplex communi-
cation is possible at least to some extend.

2.2 Ambient Noise

In our application, the NES shall be able to
move freely around the device and still be picked
up flawlessly, even when being several meters
away from the microphone and having a low
level. Therefore, the microphone must be very
sensitive and/or highly amplified. As a conse-
quence, we face high levels of ambient noise,
e.g., fan noise in an office, traffic noise, as well
as the acoustic echo described above. Reverber-
ation and the self-noise of the microphone must
also be taken into account.

In the single microphone case, noise reduc-
tion (NR) is based on the suppression principle.
To compute the suppression filter Gnoise(l, f),
the power spectral density (PSD) of the noise
must be estimated. This can be done in speak-
ing pauses, i.e., when S = 0 is detected by
voice activity detection. Today, more advanced
statistical methods are typically used [Hänsler
and Schmidt, 2004]. These allow for updating
the noise estimator even in times when both
V and S are active. Still, single channel NR
delivers best results if the noise is stationary,
i.e., the noise PSD does not change much over
time. Otherwise, the PSD estimation is likely to
be inaccurate, which may cause unnatural arti-
facts in the residual noise and speech. Typically,
strong single channel noise reduction comes at
the cost of speech distortion. However, it is the-
oretically possible to perform single channel NR
without speech distortion [Huang and Benesty,
2012].

By using more than one microphone, we can
not only exploit time-frequency information but
also spatial information. This allows for im-
proved NR, which is discussed in section 4. At
this point we note that the cancellation princi-
ple can also be applied to NR if a reference of the
noise signal is available. In section 4 we explain
how a so called blocking matrix can provide a
noise reference in adaptive beamforming.

3 Echo Cancelling in PulseAudio

Over the last years, several widely-used desktop
Linux distributions adopted PulseAudio [Poet-

tering, 2010] as the default sound system. More
recently, PulseAudio became an option to en-
able software audio routing and mixing in em-
bedded Linux handheld devices [Sarha, 2009],
competing with AudioFlinger on Android. An
alternative sound server, JACK [Davis, 2003;
Phillips, 2006], is predominantly used for pro-
fessional, low-latency audio production.

PulseAudio is the software layer that controls
the audio hardware exposed via the ALSA inter-
face by the Linux kernel. Towards the applica-
tion layer, PulseAudio offers to connect multiple
audio streams to the actual hardware, providing
services such as mixing, per-application volume
controls, sample format conversion, resampling,
et cetera. This allows concurrent use of the au-
dio resources and matches the requirements of
the application layer. An important service for
hands-free telecommunication systems is acous-
tic echo and noise reduction (AENR). Since ver-
sion 1.0, PulseAudio furnishes an echo cancella-
tion framework as a pluggable module. In PA’s
terms, the echo cancellation (EC) module sub-
sumes AENR. The actual AENR implementa-
tions (AENRI) are provided by the Speex li-
brary and Andre Adrian’s code8. With version
2.0, the WebRTC9 AENRI was introduced and
became PulseAudio’s default.

The decisive advantage of the sound server ar-
chitecture is that the responsibility for AENR
can be separated from the VoIP application,
permitting reuse of the AENR resources by
multiple software components and saving du-
plicate development effort. Furthermore, hard-
ware constraints are hidden from the applica-
tion: While the audio hardware may only han-
dle interleaved stereo samples in 16-bit signed
integers with 48 KHz, the application is actually
interested in a mono audio stream represented
by single-precision floating-point data sampled
at 16 KHz.

So far, the PulseAudio echo-cancellation
framework was limited to a symmetric number
of channels entering and leaving the AENRI,
typically a mono audio stream. However, in
an audio setup with an array of microphones,
a multi-channel audio stream is processed by
the AENRI and generally reduced to mono out-
put, see Fig. 2. The AENRI signal processing
pipeline may choose to incorporate sample rate
adaption as well, leading to an additional asym-
metry of sample data entering and exiting the

8http://www.andreadrian.de/intercom/
9http://www.webrtc.org



PulseAudio ApplicationALSA

Echo Cancellation (EC)
Module

AEC and 
NR Impl.

ALSA
sink

ALSA
source

EC
sink

EC
source

sink
master

source
master

R

R

R

R
D

X
E

Figure 2: Overview of the PulseAudio sound system providing acoustic echo and noise reduction
(AENR) service to an application (with 4 microphone channels).

EC module. A number of patches addressing
this issue and related limitations have been sub-
mitted during the PulseAudio version 4.0 devel-
opment cycle.

Fig. 2 shows the PulseAudio sound server in
between the ALSA sink/source and the appli-
cation. Instead of directly connecting to the
ALSA sink/source, the application binds to the
EC sink/source. Note that the EC module spec-
ifies its internal audio sample format and rate,
hence resampling stages (denoted by R) may
become necessary. Resampling, in PulseAu-
dio’s terms, includes sample format conversion,
channel remapping, and sample rate conver-
sion as necessary. The modular sound server
design brings great flexibility, but efficient im-
plementation of the resampling stages becomes
paramount, especially if microphones, AENRI
and application layer depend on different sam-
ple specifications.

4 Multi-Channel Audio Processing

A multi-channel noise reduction system optimal
in the minimum mean square error sense can
be factorized in a linearly constrained minimum
variance (LCMV) beamformer followed by a sin-
gle channel postfilter [Wolff and Buck, 2010].
The postfilter is essentially a noise suppressor
as explained in chapter 2. Echo suppression can
be efficiently combined with noise suppression
[Gustafsson et al., 2002].

A beamformer is a spatial filter, i.e., a beam
is steered towards a target direction, whereas
other directions are suppressed. The basic op-
eration behind linear beamforming is to filter-
and-sum the M input signals, i.e., the output F
of a filter-and-sum beamformer (FSB) W is

F (l, f) =

M−1∑
m=0

Wm(l, f)Dm(l, f) (2)

where m is the microphone index and Wm(l, f)
is the filter weight for the m-th microphone.

A fixed beamformer (FBF) uses fixed weights
W , that can be precomputed, whereas an adap-
tive beamformer adapts the weights Wm(l, f)
in dependence of the current noise field. The
most basic FBF is the delay-sum beamformer
(DSB), where W implements pure, frequency
independent time delays. The idea is to time-
align signals from the target direction. Signals
from other directions are to some extent out of
phase and cancel partially because of the sum-
mation. The DSB exhibits a broad mainlobe
of the beampattern at low frequencies and a
very narrow mainlobe at high frequencies, i.e.,
at low frequencies it cannot reduce much noise,
whereas at high frequencies little deviation from
the target direction causes strong attenuation,
leading to a low-pass filtered sound in practi-
cal conditions with steering errors. Using filter
optimization strategies, better low-end suppres-
sion and a wider mainlobe at high frequencies
can be achieved [Tashev, 2009]. A FBF can
however only be optimal for a certain, given
noise-field.

Adaptive beamformers can adapt to chang-
ing noise fields and can hence achieve more
noise reduction. Still, it is possible to set lin-
ear constraints, like distortion-less operation to-
wards the target direction. It can be shown that
an adaptive LCMV beamformer can be imple-
mented in the Generalized Sidelobe Canceller
(GSC) form that transforms the constrained op-
timization in an unconstrained one [Souden et
al., 2010]. Though formally the same, the GSC
has advantages in the implementation and pro-
vides an intuitive access to the adaptive beam-
forming problem, cf. Fig. 3.

The noisy M -channel input is processed by



FBF

AICABM

Delay
MM

1

M

1

SSL

Delay

BAC

1

M

1

Figure 3: Structure of a Generalized Sidelobe
Canceler (GSC) beamformer.

an FBF that keeps the distortion-less constraint
towards the target direction. The output of
the FBF is further enhanced by subtracting
the output of an adaptive interference canceller
(AIC). The AIC should be fed with noise-only
signals. To this end, the adaptive blocking ma-
trix (ABM) subtracts the target from the noisy
microphone signals. The purpose of the beam-
former adaption control (BAC) is to guarantee
that the AIC is adapted in times of noise-only,
whereas the ABM should only be adapted in
times of high SNR. The delays are necessary
to ensure causality. The FBF needs the tar-
get direction as a control input. If the tar-
get direction cannot be set to a fixed value, a
sound source localization (SSL) algorithm can
be used to track the source of interest. SSL
is typically based on estimating the direction-
dependent time delay of arrival between the in-
dividual microphones. In [Souden et al., 2010]
a formulation of the GSC is stated, that does
not require knowledge of the target direction or
the microphone locations, but only the source
and noise statistics. This shows the strong link
between adaptive beamforming and linear blind
source separation.

Our current multichannel AENR system con-
tains a self-steered adaptive beamformer and a
postfilter. The latter performs combined echo
and noise suppression. A dedicated AEC mod-
ule has also been developed, but is not yet im-
plemented in C. Combining an AEC with adap-
tive beamforming promises synergy effects [Her-
bordt and Kellermann, 2002], i.e., the beam-
former can assist the AEC during adaption.
Once the AEC is adapted, the beamformer can
focus on reducing interfering noise. All process-

float v = *(src++) * (1 << 15 );

// load 4 floats from src , increment pointer

vld1 .32 {q0}, [%[src]]!

// scale by q1 (= 32767)

vmul.f32 q0 , q0, q1

*dst++ = CLAMP(lrintf(v), - 0x8000 , 0x7FFF );

// convert float to 16:16 fixed -point

vcvt.s32.f32 q0 , q0 , #16

// shift right , round , narrow to 16 bit

// with saturation

vqrshrn.s32 d0, q0, #16

// store 4 int16 values , increment pointer

vst1 .16 {d0}, [%[dst]]!

Listing 1: Using ARM NEON to convert float
to 16-bit integer samples with saturation.

ing steps can be done in the frequency domain
(FD). To transform a time domain signal block
to FD and back, we use the forward and inverse
Fast Fourier Transform (FFT), respectively.

5 Targeting an embedded ARMv7
Cortex-A8 platform

To realize the actual VoIP/intercom applica-
tion, we build upon the Linux kernel and
ALSA for hardware handling and the PulseAu-
dio sound server. Here, we focus on the in-
termediate component. In order to integrate
hardware, AENRI and application, PulseAudio
must mediate sample format, sample rate and
number of channels at substantial runtime costs.
Besides the AENRI, sample rate adaptation is
expensive.

The ARMv7 processor architecture is quite
power-efficient, yet offers significantly less
computational resources than current desk-
top computers. Especially the Cortex-A8 has
weak single-precision floating-point (FP) per-
formance (i.e., most FP instructions take mul-
tiple cycles) and requires SIMD-type instruc-
tions named NEON [Anderson, 2011] for best
performance. Later CPU designs (e.g., Cortex-
A9/A15) have improved FP units and perfor-
mance is less dependent on NEON optimiza-
tions. Algorithms in fixed-point arithmetic are
more tedious to develop and often have less
numeric precision. Hence, we decided to im-
plement all audio signal processing in floating-
point arithmetic. On the OMAP3 processor,
single-precision FP NEON operations are often
executed in a single cycle and are not neces-
sarily slower than equivalent fixed-point/integer
instructions.

Resampling is provided by the Speex library



0
2000
4000
6000
8000

−40

−20

0

0
2000
4000
6000
8000

−40

−20

0

Fr
eq

ue
nc

y
(H

z)

0
2000
4000
6000
8000

−40

−20

0

Speex Output

WebRTC Output

bct 4-channel Output

Double Talk

Microphone Input

Echo Signal

Near-End Speaker

Ambient Noise

0
2000
4000
6000
8000

−40

−20

0

0
2000
4000
6000
8000

−40

−20

0

Time (s)
5 10 15 20 25 30

0
2000
4000
6000
8000

−40

−20

0

S

Y

D V

Figure 4: Spectrograms of the test audio signal (top three plots) at 16 KHz and the corresponding
output signals (bottom three plots).

for which an ARM NEON patch is available10.
On the target CPU, the FP implementation
is more efficient than fixed-point. Typically,
the AENR will be implemented in the fre-
quency domain (FD). To this end, the libav
project11 provides a fast ARM NEON FFT-
implementation12 with a public interface. List-
ing 1 illustrates how ARM NEON instructions
can be used to exploit data parallelism. For the
float to 16-bit integer sample conversion oper-
ation shown, a speedup of 11× is achieved pri-
marily due to the implicit saturation.

The overall runtime requirements of PulseAu-
dio on the target platform depend on the signal-
processing implementation, but to a large part
also on the audio latency requirements (set to 50
ms). We observe approximately 25 % CPU load
due to PulseAudio providing 4-channel AENR

10http://blog.gmane.org/gmane.comp.audio.
compression.speex.devel/month=20110901

11http://libav.org
12See http://pmeerw.net/blog/programming/arm_

fft.html for an informal comparison.

at 16 KHz. Profiling has been performed using
the Linux perf tool.

6 Test Setup and Experimental
Results

Assessing AENR systems is a broad and con-
troversial topic. In our experience, metrics that
access speech quality [Loizou, 2011] are often
not well suited to describe the behavior and ar-
tifacts that occur in complex, real world scenar-
ios. In this work, we rely on spectrogram plots
to make an exemplary comparison of different
algorithms in a complex scenario with double-
talk and noise. We do however believe that lis-
tening tests are crucial and need to complement
any numerical results.

In order to benchmark the different pluggable
AENRIs, PulseAudio’s echo-cancel-test pro-
gram is used: it reads raw audio data from a
play (denoted signal X) and record (signal D)
file and outputs the processed audio data (sig-
nal E). All experiments have been performed



at a sample rate of 16 KHz with PulseAu-
dio 3.0 on a Linux operating system. The
GNU compiler in version 4.6 has been invoked
with the options -O2 -ffast-math. The flags
-march=core2 and -march=armv7 -mfpu=neon
-mfloat-abi=softfp were used for the x86 64-
bit and ARM 32-bit target, respectively.

6.1 Audio Quality

The spectrogram plots in Fig. 4 depict the audio
energy in different frequency bands over time
(32 seconds; horizontal axis). The audio sig-
nals13 shown are near-end speaker (S), echo sig-
nal (Y ), microphone input (D) and the output
of three AENRIs (Speex, WebRTC, bct4ch).
The Adrian AEC, turned out to not be com-
petitive and completely diverged during double-
talk. Therefore, we chose to not devote space to
it in our plots.
S and Y are obtained by convolution of

speech signals with measured impulse responses
HS and HX of our device/microphone array in
a medium-sized office room. In Fig. 4, only the
first channel m = 0 (farthest from the loud-
speaker) is shown. This channel is also used as
an input for the single channel AENRIs Speex
and WebRTC. The Cartesian coordinates of the
location of microphone m are ~pm = [0, pm,y, 0],
with p0 = −0.12, p1 = −0.03, p2 = 0.03,
p3 = 0.12. For measuring HS , a loudspeaker
was placed at ~pS ≈ [0.5, 0, 0.25]. We used the
exponential sweep method to compute the im-
pulse responses [Holters et al., 2009]. HX is
obtained with the integrated loudspeaker hav-
ing its acoustic center at ~pX ≈ [0, 0.1, 0.1]. In
Fig. 4 clearly discernible, alternating speech seg-
ments including a period of double talk starting
after about 11 seconds can be seen. Before sec-
ond 22 a recording of the “quiet” office room
has been added. After second 22, a broadband
ambient noise signal – a recording of a ventila-
tor, placed at ~pv ≈ [−1.5, 0.3, 0.5] – is added to
S to compare the noise reduction capabilities of
the tested AENRIs. The added noise recordings
include the self-noise of the microphones.

Observing the outputs, the echo signal is only
partially attenuated in the Speex and WebRTC
results during the adaptation (learning) period
in the beginning. bct4ch however delivers
echo reduction right from the start and provides
good double talk performance. Once adapted,
Speex delivers very good double talk perfor-
mance. This can probably be attributed to its

13Available at http://bct-electronic.com/lac13/.

 0

 2

 4

 6

 8

 10

 12

Speex WebRTC Adrian bct bct 4-ch
 0

 20

 40

 60

 80

 100

 120

R
e
a
lt

im
e
 /

 R
u
n
ti

m
e
 (

A
R

M
v
7

)

R
e
a
lt

im
e
 /

 R
u
n
ti

m
e
 (

x
8

6
-6

4
)

ARMv7
x86-64

Figure 5: Comparing realtime vs. runtime of
several AEC plugins on x86-64 and ARMv7
(higher results are better).

advanced AEC learning rate adjustment[Valin,
2007]. WebRTC, on the other hand, suppresses
large portions of the high frequency content of
S. Furthermore, WebRTC retains audible echo,
see e.g. second 20–22. In other, practical situa-
tions WebRTC might however still be preferred
to the Speex AENRI, because it employs a more
rigorous echo suppression and loss/gain control,
which works as a safety guard if nonlinearities or
sudden changes of the echo path occur and AEC
fails. As outlined in Section 4 bct4ch does
currently not contain an actual AEC module.
Knowing this, our good echo reduction perfor-
mance is even more remarkable. It stems from
the superb interference suppression capability of
our adaptive beamformer and our high quality
postfilter.

Taking a look at the ambient noise scenario
at second 22–32 in Fig. 4, all methods are able
to reduce noise, however Speex and WebRTC
require some time to initially adapt to the new
noise characteristics. This clearly show the ben-
efit of the microphone array processing that is
less dependent on a stationary noise PSD esti-
mate.

6.2 Runtime

In Fig. 5 we compare the runtime of differ-
ent AENRIs on an ARMv7 Cortex-A8 plat-
form (TI OMAP3 processor, DM3730, clocked
at 800 MHz) and a x86-64 platform (Intel i7-
870 clocked at 3 GHz) relative to realtime. Not
surprisingly, the embedded platform turns out
to be more than 10 times slower than the PC
platform. bct and bct4ch refer to a single-
channel and multi-channel implementation de-
veloped by bct electronic. The bct and bct4ch
code has been optimized and implemented using



 0

 20

 40

 60

 80

 100

ARM (baseline) ARM NEON

R
u
n
ti

m
e
 %

2.6x Speedup

Conversion
Forward FFT

SSL
FBF

GSC (BAC+ABM+AIC)
Postfilter

Inverse FFT

Figure 6: Runtime breakdown and ARM NEON
optimization result of the bct4ch implementa-
tion.

the ARM NEON instruction set; they consume
approximately 10 % CPU. The other ARMv7
AENRIs lacking optimization compare less fa-
vorable with the Intel platform.

Fig. 6 breaks down the runtime of the
bct4ch AENRI according to the processing
structure outlined in Section 4. Straightforward
optimization of the C/C++ code yields an over-
all speedup of 2.6×. The runtime contribution
in % of the total ARM execution time can be
observed: postfilter and GSC are the most ex-
pensive execution blocks. The performance of
the FFT is not improved as baseline and opti-
mized code both depend on the external libav
FFT implementation.

7 Conclusions

We have presented first results of a multi-
channel noise/echo reduction solution built on
top of PulseAudio and motivated the design
decisions. The work has resulted in a num-
ber of improvements in the PulseAudio echo
cancellation and signal-processing framework,
which have been contributed during the version
3.0/4.0 development cycle and should facilitate
future embedded Linux audio solutions. Fur-
ther work includes optimizing code for audio
stream mixing, more efficient resampling meth-
ods, and the implementation of an efficient AEC
in the multi-channel processing pipeline.

References

M. Anderson. 2011. ARM NEON instruction
set and why you should care. In Embedded
Linux Conf.’11, San Francisco, CA, USA.

P. Davis. 2003. The JACK audio connec-
tion kit. In Proc. Linux Audio Conference,
LAC’03, Karlsruhe, Germany.

S. Gustafsson, R. Martin, P. Jax, and P. Vary.
2002. A psychoacoustic approach to com-
bined acoustic echo cancellation and noise re-
duction. IEEE Trans. on Speech and Audio
Processing, 10(5):245–256.

E. Hänsler and G. Schmidt. 2004. Acous-
tic Echo and Noise Control: A Practical Ap-
proach. Wiley, New York.

W. Herbordt and W. Kellermann. 2002.
Frequency-domain integration of acoustic
echo cancellation and a generalized sidelobe
canceller with improved robustness. Europ.
Trans. on Telecomm., 13(2):123–132.

M. Holters, T. Corbach, and U. Zölzer. 2009.
Impulse response measurement techniques
and their applicability in the real world. In
Proc. 12th Int. Conference on Digital Audio
Effects, DAFx’09, Como, Italy.

Y.A. Huang and J. Benesty. 2012. A multi-
frame approach to the frequency-domain
single-channel noise reduction problem. IEEE
Trans. on Audio, Speech & Language Process-
ing, 20(4):1256–1269.

P. Loizou, 2011. Speech quality assessment,
volume 346, pages 623–654. Springer Verlagq.

D. Phillips. 2006. Knowing Jack. Linux Mag-
azine, (67).

Lennart Poettering. 2010. Pro audio is easy,
consumer audio is hard. In Proc. Linux Audio
Conference, LAC’10, Utrecht, Netherlands.

J. Sarha. 2009. Practical experiences from
using PulseAudio in embedded handheld de-
vice. In Linux Plumbers Conf.: Audio Mini-
conf., Portland, OR, USA.

M. Souden, J. Benesty, and S. Affes. 2010. On
optimal frequency-domain multichannel lin-
ear filtering for noise reduction. IEEE Trans.
on Audio, Speech & Language Processing,
18(2):260–276.

Ivan Tashev. 2009. Sound Capture and Pro-
cessing. Wiley.

J.-M. Valin. 2007. On adjusting the learn-
ing rate in frequency domain echo cancella-
tion with double-talk. IEEE Trans. on Audio,
Speech & Language Processing, 15(3):1030–
1034.

T. Wolff and M. Buck. 2010. A generalized
view on microphone array postfilters. In Proc.
Int. Workshop on Acoustic Echo and Noise
Control, IWAENC’10, Tel Aviv, Israel.


